Nonlinear Aeroelasticity Computations in Transonic Flows Using Tightly Coupling Algorithms

Author(s):  
Zhengkun Feng ◽  
Azzeddine Soulai¨mani

A nonlinear computational aeroelasticity model based on the Euler equations of compressible flows and the linear elastodynamic equations for structures is developed. The Euler equations are solved on dynamic meshes using the ALE kinematic description. Thus, the mesh constitutes another field governed by pseudo-elatodynamic equations. The three fields are discretized using proper finite element formulations which satisfy the geometric conservation law. A matcher module is incorporated for the purpose of pairing the grids on the fluid-structure interface and for transferring the loads and displacements between the fluid and structure solvers. Two solutions strategies (Gauss Seidel and Schur-Complement) for solving the nonlinear aeroelastic system are discussed. Using second order time discretization schemes allows us to use large time steps in the computations. The numerical results on the AGARD 445.6 aeroelastic wing compare well with the experimental ones and show that the Schur-complement coupling algorithm is more robust than the Gauss-Seidel algorithm for relatively large oscillation amplitudes.

Author(s):  
Julien Verhaegen ◽  
Jacques Massoni ◽  
Eric Daniel

A coupling between a general multiphase flows model and a two-phase dilute flow model is presented. Both models are based on Eulerian approach (two fluids models) and compressible flows are considered. This coupling permits to solve problems in which a multiphase description (involving N phases) is necessary to obtain a good physical behavior of the flow on short times: it corresponds to a given location on the computational domain. Then the flow is developing and far from the location of the initial establishment of the flow, a simpler model can be used, for example a dilute two-phase model one. A methodology for coupling both models is necessary in order to get efficient calculations and a physical consistency. This coupling is not only a challenge regarding the computing resources or the programming. We also require that the wave patterns are correctly transmitted through the coupling interface. We then developed specific Riemann solvers that allow the transmission of acoustic or material waves. We also require the preservation of the conservative quantities such as mass, momentum and energy. The method is checked on ID case: propagation of uniform flows, shock tubes. Multidimensional problem are also presented, showing the efficiency of the coupling methodology regarding CPU time.


2019 ◽  
Vol 29 (1) ◽  
pp. 012101
Author(s):  
Konstantin Fackeldey ◽  
Péter Koltai ◽  
Peter Névir ◽  
Henning Rust ◽  
Axel Schild ◽  
...  

2006 ◽  
Vol 16 (10) ◽  
pp. 1559-1598 ◽  
Author(s):  
ALFREDO BERMÚDEZ ◽  
RODOLFO RODRÍGUEZ ◽  
DUARTE SANTAMARINA

This paper deals with a time-domain mathematical model for dissipative acoustics and is organized as follows. First, the equations of this model are written in terms of displacement and temperature fields and an energy equation is obtained. The resulting initial-boundary value problem is written in a functional framework allowing us to prove the existence and uniqueness of solution. Next, two different time-discretization schemes are proposed, and stability and error estimates are proved for both. Finally, numerical results are reported which were obtained by combining these time-schemes with Lagrangian and Raviart–Thomas finite elements for temperature and displacement fields, respectively.


1998 ◽  
Vol 147 (2) ◽  
pp. 362-387 ◽  
Author(s):  
Gregory Beylkin ◽  
James M. Keiser ◽  
Lev Vozovoi

2014 ◽  
Vol 15 (4) ◽  
pp. 1029-1044 ◽  
Author(s):  
Jin Qi ◽  
Yue Wang ◽  
Jiequan Li

AbstractIn this paper, a remapping-free adaptive GRP method for one dimensional (1-D) compressible flows is developed. Based on the framework of finite volume method, the 1-D Euler equations are discretized on moving volumes and the resulting numerical fluxes are computed directly by the GRP method. Thus the remapping process in the earlier adaptive GRP algorithm [17,18] is omitted. By adopting a flexible moving mesh strategy, this method could be applied for multi-fluid problems. The interface of two fluids will be kept at the node of computational grids and the GRP solver is extended at the material interfaces of multi-fluid flows accordingly. Some typical numerical tests show competitive performances of the new method, especially for contact discontinuities of one fluid cases and the material interface tracking of multi-fluid cases.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Sanna Mönkölä

This study concentrates on transient multiphysical wave problems for simulating seismic waves. The presented models cover the coupling between elastic wave equations in solid structures and acoustic wave equations in fluids. We focus especially on the accuracy and efficiency of the numerical solution based on higher-order discretizations. The spatial discretization is performed by the spectral element method. For time discretization we compare three different schemes. The efficiency of the higher-order time discretization schemes depends on several factors which we discuss by presenting numerical experiments with the fourth-order Runge-Kutta and the fourth-order Adams-Bashforth time-stepping. We generate a synthetic seismogram and demonstrate its function by a numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document