A Full Scale Test for Acoustic Fatigue in Pipework

Author(s):  
H. G. D. Goyder ◽  
K. Armstrong ◽  
L. Billingham ◽  
M. J. Every ◽  
T. P. Jee ◽  
...  

Gas flow through a corrugated pipe can produce unacceptable levels of noise. The occurrence of such noise gave rise to concerns about vibration induced fatigue of small-bore subsea pipework in the Schiehallion oil field. In order to check that the subsea pipework was free from noise-induced vibration a full scale replica of the subsea equipment containing the small-bore pipework was built and tested. The test required the generation of acoustic pressures with a 1 bar amplitude and a frequency range of 80 to 800Hz. It was also necessary to arrange for resonant conditions within the pipework and for acoustic nodes and anti-nodes to be swept though a range of possible locations. The test was conducted with full-scale conditions of methane at a static pressure of 170bar and with a range of gas flow rates. Particular attention was given to achieving the correct acoustic and structural natural frequencies together with the correct acoustic and structural damping ratios. The subsea equipment was found to be vulnerable for one operating condition. This vulnerability was removed by retro-fitting a brace to the existing subsea pipework.

1994 ◽  
Vol 1 (1) ◽  
pp. 77-83
Author(s):  
Yoshiji Moro ◽  
Tomoo Fujita ◽  
Takeshi Kanno ◽  
Akira Kobayashi

2019 ◽  
Vol 18 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Kichul Kim ◽  
Pil-Ju Park ◽  
Soomi Eo ◽  
Seungmi Kwon ◽  
Kwangrae Kim ◽  
...  

1992 ◽  
Vol 35 (3) ◽  
pp. 977-985 ◽  
Author(s):  
K. G. Gebremedhin ◽  
J. A. Bartsch ◽  
M. C. Jorgensen

2020 ◽  
pp. 1420326X2097902
Author(s):  
Hai-Xia Xu ◽  
Yu-Tong Mu ◽  
Yin-Ping Zhang ◽  
Wen-Quan Tao

Most existing models and standards for volatile organic compounds emission assume that contaminants are uniform in the testing devices. In this study, a three-dimensional transient numerical model was proposed to simulate the mass transport process based on a full-scale test chamber with a mixing fan, and the airflow field and contaminants concentration distribution were obtained within the chamber under airtight and ventilated conditions. The model was validated by comparing the numerical results with experimental data. The numerical results show that the contaminant source position and the airflow field characteristics have significant impact on the contaminant mixing, and the fan rotation has an important role in accelerating mixing. In the initial mixing stage, the concentration distribution is obviously uneven; as the mixing progresses, it gradually reaches acceptable uniformity except for some sensitive regions, such as high concentration region at the injection point of the contaminants and low concentration region at the air inlet. To ensure test accuracy, the monitor should avoid above sensitive regions; and some special regions are recommended where contaminant concentration uniformity can be reached sooner. The ventilated chamber results indicate that the mixture of contaminants in the chamber is actually better than the results shown by conventional test method.


1980 ◽  
Vol 7 (4) ◽  
pp. 614-620
Author(s):  
J. S. Kennedy ◽  
D. J. Wilson ◽  
P. F. Adams ◽  
M. Perlynn

This paper presents the results of full-scale field tests on two steel guyed latticed towers. The towers were approximately 83 m in height, were guyed at three levels, and were of bolted angle construction. The observed results consist of the natural frequencies of the first two modes of vibration as well as the damping ratio for the first mode. The observed results are compared with analytical predictions and observations made concerning the contributions of structural and cable action to the damping ratio.


2002 ◽  
Vol 218 (1-3) ◽  
pp. 169-178 ◽  
Author(s):  
J.G Liu ◽  
H.L Xiao ◽  
C.P Li

2014 ◽  
Vol 501-504 ◽  
pp. 2132-2137

Removed due to plagiarism. The original was published by: Liu, Deng and Chu (eds) © 2008 Science Press Beijing and Springer-Verlag GmbH Berlin Heidelberg Geotechnical Engineering for Disaster Mitigation and Rehabilitation http://www.ftsl.itb.ac.id/kk/geotechnical_engineering/wp-content/uploads/2008/06/irsyam-165.pdf


2008 ◽  
Vol 51 (2-3) ◽  
pp. 138-155 ◽  
Author(s):  
Peter Gauer ◽  
Karstein Lied ◽  
Krister Kristensen

Sign in / Sign up

Export Citation Format

Share Document