The Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials

Author(s):  
Omesh K. Chopra ◽  
William J. Shack

The existing fatigue strain–vs.–life (ε–N) data illustrate potentially significant effects of light water reactor (LWR) coolant environments on the fatigue resistance of pressure vessel and piping steels. This paper reviews the existing fatigue ε–N data for carbon and low–alloy steels and austenitic stainless steels in LWR coolant environments. The effects of key material, loading, and environmental parameters, such as steel type, strain amplitude, strain rate, temperature, dissolved oxygen level in water, flow rate, surface finish, and heat-to-heat variation, on the fatigue lives of these steels are summarized. An updated version of the ANL statistical models is presented for estimating the fatigue ε–N curves for these steels as a function of the material, loading, and environmental parameters. The Fen (environmental fatigue correction factor) approach for incorporating the effects of LWR coolant environments into the fatigue evaluations of the American Society of Mechanical Engineers Code is presented.

Author(s):  
Omesh K. Chopra

The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components and specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain–vs.–life (ε–N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This paper reviews the existing fatigue ε–N data for austenitic stainless steels in LWR coolant environments. The effects of key material, loading, and environmental parameters, such as steel type, strain amplitude, strain rate, temperature, dissolved oxygen level in water, and flow rate, on the fatigue lives of these steels are summarized. Statistical models are presented for estimating the fatigue ε–N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue design curves.


Author(s):  
Seiji Asada ◽  
Akihiko Hirano ◽  
Toshiyuki Saito ◽  
Yasukazu Takada ◽  
Hideo Kobayashi

In order to develop new design fatigue curves for carbon steels & low-alloy steels and austenitic stainless steels and a new design fatigue evaluation method that are rational and have clear design basis, Design Fatigue Curve (DFC) Phase 1 subcommittee and Phase 2 subcommittee were established in the Atomic Energy Research Committee in the Japan Welding Engineering Society (JWES). The study on design fatigue curves was actively performed in the subcommittees. In the subcommittees, domestic and foreign fatigue data of small test specimens in air were collected and a comprehensive fatigue database (≈6000 data) was constructed and the accurate best-fit curves of carbon steels & low-alloy steels and austenitic stainless steels were developed. Design factors were investigated. Also, a Japanese utility collaborative project performed large scale fatigue tests using austenitic stainless steel piping and low-alloy steel flat plates as well as fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect, surface finish effect and size effect. Those test results were provided to the subcommittee and utilized the above studies. Based on the above studies, a new fatigue evaluation method has been developed.


Author(s):  
Hiroshi Kanasaki ◽  
Makoto Higuchi ◽  
Seiji Asada ◽  
Munehiro Yasuda ◽  
Takehiko Sera

Fatigue life equations for carbon & low-alloy steels and also austenitic stainless steels are proposed as a function of their tensile strength based on large number of fatigue data tested in air at RT to high temperature. The proposed equations give a very good estimation of fatigue life for the steels of varying tensile strength. These results indicate that the current design fatigue curves may be overly conservative at the tensile strength level of 550 MPa for carbon & low-alloy steels. As for austenitic stainless steels, the proposed fatigue life equation is applicable at room temperature to 430 °C and gives more accurate prediction compared to the previously proposed equation which is not function of temperature and tensile strength.


Author(s):  
Gary L. Stevens ◽  
J. Michael Davis ◽  
Les Spain

Draft Regulatory Guide DG-1144 “Guidelines for Evaluating Fatigue Analyses Incorporating the Life Reduction of Metal Components Due to the Effects of the Light-Water Reactor Environment for New Reactors”, July 2006 [1], and Associated Basis Draft Document NUREG/CR-6909 (ANL-06/08), “Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials”, July 2006 [6] provided methods for addressing environmentally assisted fatigue (EAF) in all new nuclear plant designs. In these documents, a new model was proposed that more accurately accounts for actual plant conditions. The new model includes an EAF correction factor, Fen, which is different from Fen methods previously and currently being considered for adoption into the ASME Code. The Fen methods proposed in DG-1144 are also different than the Fen methods utilized by license renewal applicants, as required by the Generic Aging Lessons Learned (GALL) report [2], as documented in NUREG/CR-5704 [4] (for stainless steel) and NUREG/CR-6583 [3] (for carbon and low alloy steels).


Author(s):  
Thomas R. Leax

Technical support is provided for a fatigue curve that could potentially be incorporated into Section III of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code. This fatigue curve conservatively accounts for the effects of light water reactor environments on the fatigue behavior of austenitic stainless steels. This paper presents the data, statistical methods, and basis for the design factors appropriate for Code applications. A discussion of the assumptions and methods used in design curve development is presented.


Author(s):  
O. K. Chopra ◽  
W. J. Shack

The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. This Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life (ε-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of the existing fatigue ε-N data for carbon and low-alloy steels and wrought and cast austenitic SSs to define the effects of key material, loading, and environmental parameters on the fatigue lives of the steels. Experimental data are presented on the effects of surface roughness on the fatigue life of these steels in air and LWR environments. Statistical models are presented for estimating the fatigue ε-N curves as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are discussed. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue evaluations. A critical review of the margins for the ASME Code fatigue design curve is presented.


Author(s):  
William F. Weitze ◽  
Matthew C. Walter ◽  
Keith R. Evon

As part of the process of renewing the operating license for an additional 20 years after the original 40-year design life, nuclear plant owners in the United States (US) are required to show that they are managing the effects of aging of systems, structures, and components. US Nuclear Regulatory Commission (NRC) report NUREG-1801, the “Generic Aging Lessons Learned (GALL) Report,” identifies acceptable aging management programs, including programs for fatigue and cyclic operation. This includes fatigue usage analyses that account for reduced fatigue life for components in a reactor water environment. Earlier revisions of the GALL report required plants to perform environmentally-assisted fatigue (EAF) analyses using the rules in reports NUREG/CR-6583 (for carbon and low alloy steels) and NUREG/CR-5704 (for austenitic stainless steels), which were developed in 1998 and 1999, respectively. However, GALL Revision 2, issued in December 2010, requires that the rules in NUREG/CR-6909, issued in 2007, be used for nickel alloy materials, and allows it to be used for carbon, low-alloy and stainless steels as an alternative to those in the previous reports. This paper presents an application of the NUREG/CR-6909 rules, and makes several observations about the differences between using the newer and older rules. The analyses presented were performed for a sample set of boiling water reactor (BWR) locations.


Author(s):  
Makoto Higuchi ◽  
Masahiro Takanashi ◽  
Ichiro Tamura ◽  
Toshiaki Takada

In 2007, the US NRC issued Regulatory Guide 1.207[1] and NUREG/CR-6909[2] for evaluating fatigue incorporating the life reduction due to the effects of light-water reactor environment for new reactors. NUREG/CR-6909 provides new design fatigue curves (DFC) for carbon, low-alloy and stainless steels which are different from those in the ASME Boiler and Pressure Vessel Code Section III[3] (2007 Edition). The design fatigue curves for carbon and low-alloy steels in NUREG/CR-6909 are higher than that for ferritic steels of which specified minimum tensile strength is 552 MPa (80 ksi) or less in the ASME Code Section III. The design fatigue curve for stainless steel in the ASME Code Section III was changed to the same curve as NUREG/CR-6909 in the 2009 Addenda. However, those for carbon and low-alloy steels are still different from the NUREG curves.


Author(s):  
Seiji Asada ◽  
Akihiko Hirano ◽  
Masao Itatani ◽  
Munehiro Yasuda ◽  
Takehiko Sera ◽  
...  

In order to develop and propose new design fatigue curves for austenitic stainless steels, carbon steels and low alloy steels that are rational and have clear design basis, Design Fatigue Curve (DFC) subcommittee has been established in the Atomic Energy Research Committee in the Japan Welding Engineering Society and the study on design fatigue curves are going on. This paper introduces the plan and status of the activities of the DFC subcommittee.


Sign in / Sign up

Export Citation Format

Share Document