trap site
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Gerard J. M. Versteegh ◽  
Karin A. F. Zonneveld ◽  
Jens Hefter ◽  
Oscar E. Romero ◽  
Gerhard Fischer ◽  
...  

Abstract. Long-chain mid-chain diol (shortly diol) based proxies obtain increasing interest to reconstruct past upper ocean temperature and productivity. Here we evaluate performance of the sea surface temperature proxies; long chain diol index (LDI), the diol saturation index (DSI) and the diol chain-length index (DCI), productivity/upwelling intensity proxies: the two diol indices DIR (Rampen et al., 2008) and DIW (Willmott et al., 2010) and the combined diol index (CDI), as well as the nutrient diol index (NDI) as proxy for phosphate and nitrate levels. This evaluation is based on comparison of the diols in sediment trap samples from the upwelling region off NW Africa collected at 1.28 km water depth with daily satellite derived sea surface temperatures (SSTSAT), subsurface temperatures, productivity, the plankton composition from the trap location, monthly PO43− and NO3− concentrations, wind speed and wind direction from the nearby Nouadhibou airport. The diol based SST reconstructions are also compared the long chain alkenones based UK’37 proxy reconstructions (SSTUK). At the trap site, most diol proxies lag wind speed (phase φ = 30 days) and can be related to upwelling. Correlation with the abundance of upwelling species and wind speed is best for the DCI, DSI and NDI whereas the DI and CDI perform comparatively poorly. The nutrient proxy NDI shows no significant correlation to monthly PO43− and NO3− concentrations in the upper waters and a negative correlation with wind-induced upwelling (r2 = 0.28, φ = 32 days) as well as the abundance of upwelling species (r2 = 0.38; Table 4). It is suggested that this proxy reflects upwelling intensity rather than upper ocean nutrient concentrations. At the trap site, SSTSAT lags wind speed forced upwelling by about 4 months (φ = 129 d). The LDI based SST (SSTLDI) correlate poorly (r2 = 0.17) to SSTSAT which we attribute to variability in 1,13 diol abundance unrelated to SST such as productivity. The SSTUK correlates best with SSTSAT (r2 = 0.60). Also amplitude and absolute values agree very well and the flux corrected SSTUK time series average equals the SSTSAT annual average.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1518
Author(s):  
Anh T. Hoang ◽  
Yuriy V. Serdyuk ◽  
Stanislaw M. Gubanski

Charging and discharge currents measured in low-density polyethylene (LDPE) and LDPE/Al2O3 nanocomposite are analyzed. The experiments were conducted at temperatures of 40–80 °C utilizing a consecutive charging–discharging procedure, with the charging step at electric fields varying between 20 and 60 kV/mm. A quasi-steady state of the charging currents was earlier observed for the nanofilled specimens and it was attributed to the enhanced trapping process at polymer–nanofiller interfaces. An anomalous behavior of the discharge currents was found at elevated temperatures for both the studied materials and its occurrence at lower temperatures in the nanofilled LDPE was due to the presence of deeply trapped charges at polymer–nanofiller interfaces. The field dependence of the quasi-steady charging currents is examined by testing for different conduction mechanisms. It is shown that the space-charge-limited process is dominant and the average trap site separation is estimated at less than 2 nm for the pristine LDPE and it is at about 5–7 nm for the LDPE/Al2O3 nanocomposite. Also, location of the trapping sites in the band gap structure of the nanofilled material is altered, which substantially weakens electrical transport as compared to the unfilled counterpart.


2019 ◽  
Vol 123 (44) ◽  
pp. 26823-26830 ◽  
Author(s):  
Kazuaki Toyoura ◽  
Takeo Fujii ◽  
Naoyuki Hatada ◽  
Donglin Han ◽  
Tetsuya Uda

Author(s):  
Osamu Takakuwa ◽  
Saburo Matsuoka ◽  
Saburo Okazaki ◽  
Michio Yoshikawa ◽  
Junichiro Yamabe ◽  
...  

In order to elucidate the temperature dependence of hydrogen-enhanced fatigue crack growth (FCG), the FCG test was performed on low-alloy Cr-Mo steel JIS-SCM435 according to ASTM E647 using compact tension (CT) specimen under 0.1–95 MPa hydrogen-gas at temperature ranging from room temperature (298 K) to 423 K. The obtained results were interpreted according to trap site occupancy under thermal equilibrium state. The FCG was significantly accelerated at RT under hydrogen-gas, that its maximum acceleration rate of the FCG was 15 at the pressure of 95 MPa at the temperature of 298 K. The hydrogen-enhanced FCG was mitigated due to temperature elevation for all pressure conditions. The trap site with binding energy of 44 kJ/mol dominated the temperature dependence of hydrogen-enhanced FCG, corresponding approximately to binding energy of dislocation core. The trap site (dislocation) occupancy is decreased with the temperature elevation, resulting in the mitigation of the FCG acceleration. On the basis of the obtained results, when the occupancy becomes higher at lower temperature, e.g. 298 K, hydrogen-enhanced FCG becomes more pronounced. The lower occupancy at higher temperature does the opposite.


2018 ◽  
Vol 173 ◽  
pp. 06004 ◽  
Author(s):  
Nadezhda Fialko ◽  
Maxim Pyatkov ◽  
Victor Lakhno

Based on the semi-classical Holstein Hamiltonian we consider charge transfer along a DNA chain of sites at different thermostat temperatures. Recently, using the computer simulation, it has been shown that the charge distribution in homogeneous chains in thermodynamic equilibrium depends not only on the temperature, but also on the length of the chain. We have studied numerically the case of polyadenine fragments with a defect site in the middle of the chain. The results demonstrate qualitatively similar behavior of thermodynamic equilibrium quantities in the case of the homogeneous chain and of the chain with a defect. Insertion of a trap-site enhances the stability of polaron states.


2017 ◽  
Vol 47 (2) ◽  
pp. 1611-1619 ◽  
Author(s):  
J. F. P. Souza ◽  
J. P. M. Serbena ◽  
E. L. Kowalski ◽  
L. C. Akcelrud

2016 ◽  
Vol 30 ◽  
pp. 275-280 ◽  
Author(s):  
Shun-Wei Liu ◽  
Ya-Ze Li ◽  
Shao-Yu Lin ◽  
Yi-Hua Li ◽  
Chih-Chien Lee

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
C. Hüter ◽  
S. Dang ◽  
X. Zhang ◽  
A. Glensk ◽  
R. Spatschek

We discuss hydrogen diffusion and solubility in aluminum alloyed Fe-Mn alloys. The systems of interest are subjected to tetragonal and isotropic deformations. Based onab initiomodelling, we calculate solution energies and then employ Oriani’s theory which reflects the influence of Al alloying via trap site diffusion. This local equilibrium model is complemented by qualitative considerations of Einstein diffusion. Therefore, we apply the climbing image nudged elastic band method to compute the minimum energy paths and energy barriers for hydrogen diffusion. Both for diffusivity and solubility of hydrogen, we find that the influence of the substitutional Al atom has both local chemical and nonlocal volumetric contributions.


Sign in / Sign up

Export Citation Format

Share Document