Security in the Transport of Radioactive Materials

Author(s):  
Ronald B. Pope ◽  
Richard R. Rawl

The United States Department of Energy National Nuclear Security Administration’s (DOE/NNSA) Global Threat Reduction Initiative (GTRI), the International Atomic Energy Agency (IAEA) and active IAEA Donor States are working together to strengthen the security of nuclear and radioactive materials during transport to mitigate the risks of theft, diversion, or sabotage. International activities have included preparing and publishing the new IAEA guidance document Security in the Transport of Radioactive Material while ensuring that security recommendations do not conflict with requirements for safety during transport, and developing and providing training programs to assist other countries in implementing radioactive material transport security programs. This paper provides a brief update on the status of these transportation security efforts.

Nukleonika ◽  
2017 ◽  
Vol 62 (4) ◽  
pp. 303-309 ◽  
Author(s):  
Mouhib Mohammed ◽  
Chentouf Mouad ◽  
Guessous Amina

Abstract An automatic control system is one of the most important parts of an irradiation facility. The level of this control is always maintained to comply with safety procedures during routine work in this field. Also sometimes it is limited to the minimum level of regulation required due to economical aspects; some commercial systems are generally made by manufacturers of industrial facilities and considered affordable by irradiators. In some cases specific irradiation facilities tailor their control systems to their needs. For this kind of irradiator the control system can be developed and upgraded according to personal and industrial experiences. These upgrading procedures are also used by others to develop their systems. The objective of this paper is to share a local experience in upgrading security, safety systems and the use of cobalt-60 for the irradiator. It is a composite experiment at SIBO INRA/Tangier, Morocco and concerns the: (i) upgrade of cobalt-60 in a temporary pool in the SIBO irradiator in Tangier. This operation was conducted in collaboration with the International Atomic Energy Agency (IAEA) and was a success story of 2014 according to the general conference of IAEA; (ii) safety and technical upgrade of the system in the SIBO irradiator made in collaboration with IAEA; (iii) installation and upgrade of the security system in accordance with the Global Threat Reduction Programme (GTRP) to reduce the threat of a Radiological Dispersal Device (RDD) in collaboration with The United States Department of Energy’s National Nuclear Security Administration (NNSA).


Author(s):  
D. King ◽  
G. Rochau ◽  
D. Oscar ◽  
C. Morrow ◽  
P. Tsvetkov ◽  
...  

The United States Department of Energy, Nuclear Energy Research Initiative (NERI) Direct Energy Conversion Proof of Principle (DECPOP) project has as its goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without an intermediate thermal process. A prior Direct Energy Conversion (DEC) project [1] has been completed and indicates that a viable direct energy device is possible if several technological issues can be overcome. The DECPOP program is focusing on two of the issues: charged particle steering and high voltage hold-off. This paper reports on the progress of the DECPOP project. Two prototype concepts are under development: a Fission Electric Cell using magnetic insulation and a Fission Fragment Magnetic Collimator using magnetic fields to direct fission fragments to collectors. Included in this paper are a short project description, an abbreviated summary of the work completed to date, a description of ongoing and future project activities, and a discussion of the potential for future research and development.


Author(s):  
Alex Frank ◽  
Peter Therkelsen ◽  
Miguel Sierra Aznar ◽  
Vi H. Rapp ◽  
Robert K. Cheng ◽  
...  

About 75% of the electric power generated by centralized power plants feeds the energy needs from the residential and commercial sectors. These power plants waste about 67% of primary energy as heat emitting 2 billion tons of CO2 per year in the process (∼ 38% of total US CO2 generated per year) [1]. A study conducted by the United States Department of Energy indicated that developing small-scale combined heat and power systems to serve the commercial and residential sectors could have a significant impact on both energy savings and CO2 emissions. However, systems of this scale historically suffer from low efficiencies for a variety of reasons. From a combustion perspective, at these small scales, few systems can achieve the balance between low emissions and high efficiencies due in part to the increasing sensitivity of the system to hydrodynamic and heat transfer effects. Addressing the hydrodynamic impact, the effects of downscaling on the flowfield evolution were studied on the low swirl burner (LSB) to understand if it could be adapted to systems at smaller scales. Utilizing particle image velocimetry (PIV), three different swirlers were studied ranging from 12 mm to 25.4 mm representing an output range of less than 1 kW to over 23 kW. Results have shown that the small-scale burners tested exhibited similar flowfield characteristics to their larger-scale counterparts in the non-reacting cases studied. Utilizing this data, as a proof of concept, a 14 mm diameter LSB with an output of 3.33 kW was developed for use in microturbine operating on a recuperated Brayton cycle. Emissions results from this burner proved the feasibility of the system at sufficiently lean mixtures. Furthermore, integration of the newly developed LSB into a can style combustor for a microturbine application was successfully completed and comfortably meet the stringent emissions targets. While the analysis of the non-reacting cases was successful, the reacting cases were less conclusive and further investigation is required to gain an understanding of the flowfield evolution which is the subject of future work.


1997 ◽  
Vol 492 ◽  
Author(s):  
W. D. Wilson ◽  
C. M. Schaldach

ABSTRACTWe present a method for the calculation of the binding and rotational energies of neutral (H2S) and charged (HS-) molecules impinging upon a charged (Cu <100>) surface in the presence of an electrolyte. A molecular surface is constructed surrounding the H2S and HS- molecules forming boundary elements. A coupled Schrödinger-Poisson-Boltzmann iterative procedure treats the electronic structure of the molecules at the 6–31G**/MP2 level of theory and includes solvation effects through the single and double layers of charge induced by the electronic distribution. The molecule, together with its charged layers, forms a Molecular Single and Double Layer (MSDL), an object which then interacts with a Gouy-Chapman plane within the electrolyte. The additional induced charge at the molecular surface resulting from this electric field is obtained by solving a second set of boundary element equations. Repulsive interactions between the atoms of the molecule and those of the surface are obtained using a rigid-ion Hartree-Fock method. Binding energies of the molecule to the surface are determined as a function of the real surface charge imposed and also the ionic strength of the solution. It is found that surface charges can completely (180°) reorient these molecules and that the counterions in the solution can completely screen binding effects of even large surface charges.Work supported by the United States Department of Energy under contract #DE-AC04–94AL85000.


1995 ◽  
Vol 117 (3) ◽  
pp. 424-431
Author(s):  
A. Saith ◽  
P. F. Norton ◽  
V. M. Parthasarathy

The Ceramic Stationary Gas Turbine (CSGT) Program has utilized the SPSLIFE computer code to evaluate the preliminary design of ceramic components. The CSGT program is being performed under the sponsorship of the United States Department of Energy, Office of Industrial Technology, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. Preliminary design evaluation and life assessment results are presented here for the following components: (1) Stage 1 turbine blade, (2) Stage 1 turbine nozzle, and (3) combustor inner liner. From the results of the analysis, recommendations are made for improving the life and reliability of the components. All designs were developed in Phase I (preliminary design) of the CSGT program and will be optimized in Phase II (detail design) of the program.


Author(s):  
R. A. Rackley ◽  
J. R. Kidwell

The Garrett/Ford Advanced Gas Turbine Powertrain System Development Project, authorized under NASA Contract DEN3-167, is sponsored by and is part of the United States Department of Energy Gas Turbine Highway Vehicle System Program. Program effort is oriented at providing the United States automotive industry the technology base necessary to produce gas turbine powertrains competitive for automotive applications having: (1) reduced fuel consumption, (2) multi-fuel capability, and (3) low emissions. The AGT101 powertrain is a 74.6 kW (100 hp), regenerated single-shaft gas turbine engine operating at a maximum turbine inlet temperature of 1644 K (2500 °F), coupled to a split differential gearbox and Ford automatic overdrive production transmission. The gas turbine engine has a single-stage centrifugal compressor and a single-stage radial inflow turbine mounted on a common shaft. Maximum rotor speed is 10,472 rad/sec (100,000 rpm). All high-temperature components, including the turbine rotor, are ceramic. AGT101 powertrain development has been initiated, with testing completed on many aerothermodynamic components in dedicated test rigs and start of Mod I, Build 1 engine testing.


Author(s):  
Arun Saith ◽  
Paul F. Norton ◽  
Vijay M. Parthasarathy

The Ceramic Stationary Gas Turbine (CSGT) Program has utilized the SPSLIFE computer code to evaluate the preliminary design of ceramic components. The CSGT program is being performed under the sponsorship of the United States Department of Energy, Office of Industrial Technology, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. Preliminary design evaluation and life assessment results are presented here for the following components: (1) Stage 1 Turbine Blade, (2) Stage 1 Turbine Nozzle, and (3) Combustor Inner Liner. From the results of the analysis, recommendations are made for improving the life and reliability of the components. All designs were developed in Phase I (preliminary design) of the CSGT program and will be optimized in Phase II (detail design) of the program.


Author(s):  
G. Rochau ◽  
J. Cash ◽  
D. King ◽  
C. Morrow ◽  
D. Seidel ◽  
...  

The United States Department of Energy, Nuclear Energy Research Initiative (NERI) Direct Energy Conversion (DEC) project has as its goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without an intermediate thermal process. Enough of the project has been completed, roughly two thirds, to indicate that a viable direct energy device is possible. This paper reports on the progress of the DEC project. Three concepts are under development: Fission Electric Cell using magnetic insulation, Magnetic Collimator using magnetic fields to direct fission fragments to collectors, and Gas Vapor Core Reactor using magnetohydrodynamics to generate electrical current. Included in this paper area a short project description, an abbreviated summary of the work completed to date, a description of ongoing and future project activities, and a discussion of the potential for future research and development.


Sign in / Sign up

Export Citation Format

Share Document