The AGT101 Advanced Automotive Gas Turbine

Author(s):  
R. A. Rackley ◽  
J. R. Kidwell

The Garrett/Ford Advanced Gas Turbine Powertrain System Development Project, authorized under NASA Contract DEN3-167, is sponsored by and is part of the United States Department of Energy Gas Turbine Highway Vehicle System Program. Program effort is oriented at providing the United States automotive industry the technology base necessary to produce gas turbine powertrains competitive for automotive applications having: (1) reduced fuel consumption, (2) multi-fuel capability, and (3) low emissions. The AGT101 powertrain is a 74.6 kW (100 hp), regenerated single-shaft gas turbine engine operating at a maximum turbine inlet temperature of 1644 K (2500 °F), coupled to a split differential gearbox and Ford automatic overdrive production transmission. The gas turbine engine has a single-stage centrifugal compressor and a single-stage radial inflow turbine mounted on a common shaft. Maximum rotor speed is 10,472 rad/sec (100,000 rpm). All high-temperature components, including the turbine rotor, are ceramic. AGT101 powertrain development has been initiated, with testing completed on many aerothermodynamic components in dedicated test rigs and start of Mod I, Build 1 engine testing.

Author(s):  
J. R. Kidwell ◽  
D. M. Kreiner ◽  
R. A. Rackley ◽  
J. L. Mason

The Garrett/Ford Advanced Gas Turbine (AGT) Technology Project, authorized under NASA Contract DEN3-167, is sponsored by and is part of the United States Department of Energy Gas Turbine Highway Vehicle System Program. Program effort is oriented at providing the United States automotive industry the high risk long-range technology necessary to produce gas turbine powertrains for automobiles that will have reduced fuel consumption and reduced environmental impact. The AGT101 power section is a 74.6 kW (100 hp), regenerated single-shaft gas turbine engine operating at a maximum turbine inlet temperature of 1371°C (2500°F). Maximum rotor speed is 10,472 rad/sec (100,000 rpm). All high temperature components, including the turbine rotor, are ceramic. Development has progressed through aerothermodynamic testing of all components with compressor and turbine performance goals achieved. Some 200 hours of AGT101 testing has been accumulated at a nominal 871°C (1600°F) on three metal engines. Individual and collective ceramic component screening tests have been successfully accomplished at temperatures up to 1149°C (2100°F). Ceramic turbine rotors have been successfully cold spun to the required proof speed of 12,043 rad/sec (115,000 rpm), a 15-percent overspeed, and subjected to dynamic thermal shock tests simulating engine conditions. Engine testing of the ceramic structures and of the ceramic turbine rotor is planned in the near future.


2021 ◽  
Author(s):  
Jeffrey S. Patterson ◽  
Kevin Fauvell ◽  
Dennis Russom ◽  
Willie A. Durosseau ◽  
Phyllis Petronello ◽  
...  

Abstract The United States Navy (USN) 501-K Series Radiological Controls (RADCON) Program was launched in late 2011, in response to the extensive damage caused by participation in Operation Tomodachi. The purpose of this operation was to provide humanitarian relief aid to Japan following a 9.0 magnitude earthquake that struck 231 miles northeast of Tokyo, on the afternoon of March 11, 2011. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost in excess of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine powered U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and needed to be decontaminated, cleaned, repaired and returned to the Fleet. During the past eight years, the USN has been very proactive and vigilant with their RADCON efforts, and as of the end of calendar year 2019, have successfully completed the 501-K Series portion of the RADCON program. This paper will update an earlier ASME paper that was written on this subject (GT2015-42057) and will summarize the U.S. Navy’s 501-K Series RADCON effort. Included in this discussion will be a summary of the background of Operation Tomodachi, including a discussion of the affected hulls and related gas turbine equipment. In addition, a discussion of the radiological contamination caused by the disaster will be covered and the resultant effect to and the response by the Marine Gas Turbine Program. Furthermore, the authors will discuss what the USN did to remediate the RADCON situation, what means were employed to select a vendor and to set up a RADCON cleaning facility in the United States. And finally, the authors will discuss the dispensation of the 501-K Series RADCON assets that were not returned to service, which include the 501-K17 gas turbine engine, as well as the 250-KS4 gas turbine engine starter. The paper will conclude with a discussion of the results and lessons learned of the program and discuss how the USN was able to process all of their 501-K34 RADCON affected gas turbine engines and return them back to the Fleet in a timely manner.


Author(s):  
H. A. Johnson ◽  
G. K. Bhat

At the present time, virtually all superalloys used in Soviet gas turbine engines have been electroslag remelted. The use of this process in the United States has been at a virtual standstill since its inception by Hopkins in 1935. This paper will cover recent development effort on the process and what it offers to the industry. The process itself will be described in detail. Included also will be its advantages, both in metalworking and resultant mechanical properties obtained on actual gas turbine engine components fabricated from electroslag remelted superalloys.


Author(s):  
Leslie Faulder ◽  
John McClain ◽  
Bryan Edwards ◽  
Vijay Parthasarathy

The goal of the Ceramic Stationary Gas Turbine(CSGT) Development Program, under the sponsorship of the United States Department of Energy (DOE), Office of Industrial Technologies (OIT), is to improve the performance (fuel efficiency, output power, exhaust emissions) of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. Phase II of this program includes detailed engine and component design, procurement and testing. This paper will review the design and test of the first stage ceramic nozzle for the Centaur 50S engine. For this test an uncooled monolithic ceramic nozzle made from SN-88 silicon nitride(NGK Insulators Ltd.) was used. A major challenge in the successful introduction of ceramic parts into a gas turbine is the design of the interface between the ceramic parts and metallic components. The design and attachment of the ceramic nozzle was greatly influenced by these considerations. Metallic components in the stationary structure of the turbine have been added or redesigned to retrofit the ceramic nozzle into the all metallic Centaur 50S engine. This paper will also discuss special handling and assembly techniques used to install the ceramic nozzle into the engine. Trial assemblies were used in the engine build process, this proved most beneficial in identifying problems and reducing the risk of damage to the ceramic nozzles. Assembly techniques were designed to reduce assembly loads and to eliminate blind assemblies. Before installing any ceramic nozzles into the engine they were first required to successfully pass both mechanical and thermal proof tests. Details of these proof tests and the final full load engine test will be described in this paper. The engine test was run at a turbine rotor inlet temperature(TRIT) of 1010°C. Total number of engine starts was six, and the total run time was approximately 10 hours.


Author(s):  
Matthew Driscoll ◽  
Thomas Habib ◽  
William Arseneau

The United States Navy uses the General Electric LM2500 gas turbine engine for main propulsion on its newest surface combatants including the OLIVER HAZARD PERRY (FFG 7) class frigates, SPRUANCE (DD 963) class destroyers, TICONDEROGA (CG 47) class cruisers, ARLIEGH BURKE (DDG 51) class destroyers and SUPPLY (AOE 6) class oilers. Currently, the Navy operates a fleet of over 400 LM2500 gas turbine engines. This paper discusses the ongoing efforts to characterize the availability of the engines aboard ship and pinpoint systems/components that have significant impact on engine reliability. In addition, the program plan to upgrade the LM2500’s standard configuration to improve reliability is delineated.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Bennett M. Staton ◽  
Brian T. Bohan ◽  
Marc D. Polanka ◽  
Larry P. Goss

Abstract A disk-oriented engine was designed to reduce the overall length of a gas turbine engine, combining a single-stage centrifugal compressor and radial in-flow turbine (RIT) in a back-to-back configuration. The focus of this research was to understand how this unique flow path impacted the combustion process. Computational analysis was accomplished to determine the feasibility of reducing the axial length of a gas turbine engine utilizing circumferential combustion. The desire was to maintain circumferential swirl from the compressor through a U-bend combustion path. The U-bend reverses the outboard flow from the compressor into an integrated turbine guide vane in preparation for power extraction by the RIT. The computational targets for this design were a turbine inlet temperature of 1300 K, operating with a 3% total pressure drop across the combustor, and a turbine inlet pattern factor (PF) of 0.24 to produce a cycle capable of creating 668 N of thrust. By wrapping the combustion chamber about the circumference of the turbomachinery, the axial length of the entire engine was reduced. Reallocating the combustor volume from the axial to radial orientation reduced the overall length of the system up to 40%, improving the mobility and modularity of gas turbine power in specific applications. This reduction in axial length could be applied to electric power generation for both ground power and airborne distributive electric propulsion. Computational results were further compared to experimental velocity measurements on custom fuel–air swirl injectors at mass flow conditions representative of 668 N of thrust, providing qualitative and quantitative insight into the stability of the flame anchoring system. From this design, a full-scale physical model of the disk-oriented engine was designed for combustion analysis.


Author(s):  
Zhongran Chi ◽  
Haiqing Liu ◽  
Shusheng Zang ◽  
Chengxiong Pan ◽  
Guangyun Jiao

Abstract The inhomogeneity of temperature in a turbine is related to the nonuniform heat release and air injections in combustors. In addition, it is influenced by the interactions between turbine cascades and coolant injections. Temperature inhomogeneity results in nonuniform flow temperature at turbine outlets, which is commonly measured by multiple thermal couples arranged in the azimuthal direction to monitor the operation of a gas turbine engine. Therefore, the investigation of temperature inhomogeneity transportation in a multistage gas turbine should help in detecting and quantifying the over-temperature or flameout of combustors using turbine exhaust temperature. Here the transportation of temperature inhomogeneity inside the four-stage turbine of a 300-MW gas turbine engine was numerically investigated using 3D CFD. The computational domain included all four stages of the turbine, consisting of more than 500 blades and vanes. Realistic components (N2, O2, CO2, and H2O) with variable heat capacities were considered for hot gas and cooling air. Coolants were added to the computational domain through more than 19,000 mass and momentum source terms. his was simple compared to realistic cooling structures. A URANS CFD run with over-temperature/flameout at 6 selected combustors out of 24 was carried out. The temperature distributions at rotor–stator interfaces and the turbine outlet were quantified and characterized by Fourier transformations in the time domain and space domain. It is found that the transport process from the hot-streaks/cold-streaks at the inlet to the outlet is relatively stable. The cold and hot fluid is redistributed in time and space due to the stator and rotor blades, in the region with a large parameter gradient at the inlet, strong unsteady temperature field and composition field appear. The distribution of the exhaust gas composition has a stronger correlation with the inlet temperature distribution and is less susceptible to interference.


2003 ◽  
Author(s):  
Quazi A. Hossain

For more than the last fifteen years, the United States Department of Energy (DOE) has been using a probabilistic performance goal-based seismic design method for structures, systems, and components (SSCs) in its nuclear and hazardous facilities. Using a graded approach, the method permits the selection of probabilistic performance goals or acceptable failure rates for SSCs based on the severity level of SSC failure consequences. The method uses a site-specific probabilistic seismic hazard curve as the basic seismic input motion definition, but utilizes the existing national industry consensus design codes for specifying load combination and design acceptance criteria in such a way that the target probabilistic performance goals are met. Recently, the American Nuclear Society (ANS) and the American Society of Civil Engineers (ASCE) have undertaken the development of a number of national consensus standards that will utilize the performance goal-based seismic design experience base in the DOE complex. These standards are presently in various stages of development, some nearing completion. Once completed, these standards are likely to be adopted by various agencies and organizations in the United States. In addition to the graded approach of DOE’s method, these standards incorporate design provisions that permit seismic design of SSCs to several levels of functional performance. This flexibility of choosing a functional performance level in the design process results in an optimum, but risk-consistent design. The paper will provide an outline of two of these standards-in-progress and will present the author’s understanding of their basic philosophies and technical bases. Even though the author is an active member of the development committees for these two standards, the technical opinions expressed in this paper are author’s own, and does not reflect the views of any of the committees or the views of the organizations with which any member of the committees are affiliated.


Sign in / Sign up

Export Citation Format

Share Document