Research on Microstructure Dependence of Near-Threshold Fatigue Crack Propagation by Combined Analyses of Fracture Surface and Fatigue Crack Growth Path

Author(s):  
Ming-Liang Zhu ◽  
Fu-Zhen Xuan ◽  
Guo-Zhen Wang ◽  
Zheng-Dong Wang

Near-threshold fatigue crack growth behavior was investigated in a newly developed steel 25Cr2NiMo1V with different heat treatments to meet different property requirements of high-pressure (HP) and low-pressure (LP) parts in the combined steam turbine rotor. The load-shedding method was adopted in the near-threshold fatigue crack growth experiment at room temperature with a constant load ratio of 0.1. Combined analyses of crack surface and fatigue crack growth path were carried out to identify the dominant crack growth mechanisms in both HP and LP. Results show that in the threshold regime, fatigue crack growth resistance of the HP is clearly superior to that of LP and hence shows strongly dependence on the microstructure of 25Cr2NiMo1V. The distributed bainitic microstructures and larger prior austenite grain size in HP result in more tortuous crack propagation path than that in LP. Compared with ferritic blocks in HP, the tempered martensitic laths in LP do not play a dominate role in stopping the fatigue crack advance.

2021 ◽  
Vol 11 (16) ◽  
pp. 7480
Author(s):  
Yahya Ali Fageehi

Problems in fracture mechanics are difficult when the appropriate analysis is unspecified, which is very common in most real-life situations. Finite element modeling is thus demonstrated to be an essential technique to overcome these problems. There are currently various software tools available for modeling fracture mechanics problems, but they are usually difficult to use, and obtaining accurate results is not an obvious task. This paper illustrates some procedures in two finite element programs to solve problems in two- and three-dimensional linear-elastic fracture mechanics, and an educational proposal is made to use this software for a better understanding of fracture mechanics. Crack modeling was done in a variety of ways depending on the software. The first is the well-known ANSYS, which is usually utilized in industry, and the second was a freely distributed code, called FRANC2D/L, from Cornell University. These software applications were used to predict the fatigue crack growth path as well as the associated stress intensity factors. The predicted results demonstrate that the fatigue crack is turned towards the hole. The fatigue crack growth paths are influenced by the varying positions and sizes of single holes, while two symmetrically distributed holes have no effect on the fatigue crack growth direction. The findings of the study agree with other experimental crack propagation studies presented in the literature that reveal similar crack propagation trajectory observations.


2021 ◽  
Vol 1016 ◽  
pp. 1193-1198
Author(s):  
Shou Dao Qu ◽  
Ze Sheng You

Fatigue crack growth resistance of ultrafine grained Cu processed by equal channel angular pressing (ECAP) was investigated. Particular emphasis was devoted to the effects of microstructure evolution on fatigue crack growth in the near-threshold regime. The ultrafine grained Cu exhibits a lower fatigue threshold than coarse-grained Cu at stress ratios of 0.1 and 0.7. Fatigue induced coarsening of the UFG structure near the fatigue crack and intergranular fatigue crack growth are observed.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3380
Author(s):  
Abdulnaser M. Alshoaibi ◽  
Yahya Ali Fageehi

The main objective of this work was to present a numerical modelling of crack growth path in linear elastic materials under mixed-mode loadings, as well as to study the effect of presence of a hole on fatigue crack propagation and fatigue life in a modified compact tension specimen under constant amplitude loading condition. The ANSYS Mechanical APDL 19.2 is implemented for accurate prediction of the crack propagation paths and the associated fatigue life under constant amplitude loading conditions using a new feature in ANSYS which is the smart crack growth technique. The Paris law model has been employed for the evaluation of the mixed-mode fatigue life for the modified compact tension specimen (MCTS) with different configuration of MCTS under the linear elastic fracture mechanics (LEFM) assumption. The approach involves accurate evaluation of stress intensity factors (SIFs), path of crack growth and a fatigue life evaluation through an incremental crack extension analysis. Fatigue crack growth results indicate that the fatigue crack has always been attracted to the hole, so either it can only curve its path and propagate towards the hole, or it can only float from the hole and grow further once the hole has been lost. In terms of trajectories of crack propagation under mixed-mode load conditions, the results of this study are validated with several crack propagation experiments published in literature showing the similar observations. Accurate results of the predicted fatigue life were achieved compared to the two-dimensional data performed by other researchers.


Author(s):  
Adrian Loghin ◽  
Shakhrukh Ismonov

Abstract Assessing the crack propagation life of components is a critical aspect in evaluating the overall structural integrity of a mechanical structure that poses a risk of failure. Engineers often rely on industry standards and fatigue crack growth tools such as NASGRO [1] and AFGROW [2] to perform life assessment for different structural components. A good understanding of material damage tolerant capabilities, and the component’s loading mission during service conditions are required along with the availability of generic fracture mechanics models implemented in the lifing tools. Three-dimensional (3D) linear elastic fracture mechanics (LEFM) finite element modeling (FEM) is also a viable alternative to simulate crack propagation in a component. This method allows capturing detailed geometry of the component and representative loading conditions which can be crucial to accurately simulate the three dimensionality of the propagating crack shape and further determine the associated loading cycles. In comparison to a generic model, the disadvantage of the 3D FEM is the extended runtime. One feasible way to benefit from 3D modeling is to employ it to understand the crack front evolution and growth path for the representative loading condition. Mode I stress intensity factors (KI) along the predetermined crack growth path can be generated for use in fatigue crack growth tools such as NASGRO. In the current study, such a 3D FEM lifing process is presented using a classical bolt-nut assembly, components that are commonly used in engineering design. First, KI solutions for a fixed crack aspect ratio a/c = 1 are benchmarked against a similar solution available in NASGRO. Next, a predefined set of crack shapes and sizes are simulated using 3D FEA. A machine learning model Gaussian Process (GP) was trained to predict the KI solutions of the 3D model, which in turn was used in the crack propagation simulation to accelerate the life assessment process. Verification of the implemented procedure is done by correlating the crack growth curves predicted from GP to the results obtained directly from 3D FE crack propagation method.


Sign in / Sign up

Export Citation Format

Share Document