Development of a Numerical Model to Represent Two-Phase Flow Configurations in a Tube Bundle

Author(s):  
Hubert Senez ◽  
Ste´phane E´tienne

Two-phase cross-flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting wear or fatigue. Studies on the subject, providing results on turbulence-induced displacement, fluid-elastic instabilities, and flow patterns have already been performed. It has been shown that the flow configuration plays an important role in the vibrations excitation mechanism. Previous studies showed the existence of unexpected quasi-periodic forces acting on a tube bundle subjected to two-phase cross-flow. The present work aims to understand the physical origin of these forces. A simple numerical model was developed to simulate two-phase cross-flow acting on a tube bundle. This model considers a continuous liquid potential flow across a tube bundle, with virtual bubbles being introduced in the flow. Three kinds of forces act on the bubbles: buoyancy forces, drag forces, and impact forces. These forces take place between two bubbles, or between a bubble and a cylinder. Two bubbles may coalesce if they hit each other, and conversely a bubble may split into two bubbles if the shear flow is strong enough. These local considerations on bubbles have global consequences on the flow configuration. Preliminary results show similarities between the numerical flow configuration and the experiments.

Author(s):  
C. Zhang ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting-wear or fatigue. Detailed vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures over a broad range of void fraction and mass fluxes. Both the dynamic lift and drag forces were measured with strain gage instrumented cylinders. The experiments revealed somewhat unexpected but significant quasi-periodic forces in both the drag and lift directions. The periodic forces appeared well correlated along the cylinder with the drag force somewhat better correlated than the lift forces. The periodic forces are also dependent on the position of the cylinder within the bundle.


2006 ◽  
Vol 129 (1) ◽  
pp. 21-27 ◽  
Author(s):  
C. Zhang ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting-wear or fatigue. Detailed vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures over a broad range of void fraction and mass fluxes. Both the dynamic lift and drag forces were measured with strain gage instrumented cylinders. The experiments revealed somewhat unexpected but significant quasi-periodic forces in both the drag and lift directions. The periodic forces appeared well correlated along the cylinder with the drag force somewhat better correlated than the lift forces. The periodic forces are also dependent on the position of the cylinder within the bundle.


Author(s):  
H. Senez ◽  
N. W. Mureithi ◽  
M. J. Pettigrew

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting wear or fatigue. Detailed flow and vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. Studies on this subject have already been done, providing results on flow regimes, fluidelastic instabilities, and turbulence-induced vibration. The spectrum of turbulence-induced forces has usually been expected to be similar to that in single-phase flow. However, a recent study, using tubes with a diameter larger than that in a real steam generator, showed the existence of significant quasi-periodic forces in two-phase flow. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air-water cross-flow, to simulate two-phase mixtures. The tube bundle here has the same geometry as that of a real steam generator. The quasi-periodic forces have now also been observed in this tube bundle. The present work aims to understand turbulence-induced forces acting on the tube bundle, providing results on drag and lift force spectra and their behaviour according to flow parameters, and describing their correlations. Detailed experimental test results are presented in this paper. Comparison is also made with previous measurements with larger diameter tubes. The present results suggest that quasi-periodic fluid forces are not uncommon in tube arrays subjected to two-phase cross-flow.


Author(s):  
E. S. Perrot ◽  
N. W. Mureithi ◽  
M. J. Pettigrew ◽  
G. Ricciardi

This paper presents test results of vibration forces in a normal triangular tube bundle subjected to air-water cross-flow. The dynamic lift and drag forces were measured with strain gage instrumented cylinders. The array has a pitch-to-diameter ratio of 1.5, and the tube diameter is 38 mm. A wide range of void fraction and fluid velocities were tested. The experiments revealed significant forces in both the drag and lift directions. Constant frequency and quasi-periodic fluid forces were found in addition to random excitation. These forces were analyzed and characterized to understand their origins. The forces were found to be dependent on the position of the cylinder within the bundle. The results are compared with those obtained with flexible cylinders in the same tube bundle and to those for a rotated triangular tube bundle. These comparisons reveal the influence of quasi-periodic forces on tube motions.


Author(s):  
Sarra Zoghlami ◽  
Cédric Béguin ◽  
Stéphane Étienne

To reduce the damage caused by induced vibrations due to two-phase cross flow on tube bundles in heat exchangers, a deep understanding of the different sources of this phenomenon is required. For this purpose, a numerical model was previously developed to simulate the quasi periodic forces on the tube bundle due to two-phase cross flow. An Euler-Lagrange approach is adopted to describe the flow. The Euler approach describes the continuous phase (liquid) using potential flow. The dispersed phase is assumed to have no interaction on liquid flow. Based on visual observation, static vortices behind the tube are introduced. The Lagrange approach describes the dispersed phase (gas). The model allows bubbles to split up or to coalesce. The forces taken into account acting on the bubbles are the buoyancy, the drag and induced drag, the added mass and induced added mass and impact force (bubble-bubble and bubble-tube). Forces taken into account acting on the tubes are impact forces and induced drag and added mass forces. This model allows us to obtain quasi periodic force on tube induced by two-phase cross flow of relative good magnitude and frequency contains. The model still needs improvement to bring us closer to experimental data of force, for example by introducing a dependency between the void ratio and the intensity of the vortex and by taking into account the bubbles deformation.


Author(s):  
G. Ricciardi ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase flow in power plant steam generators can induce tube vibrations, which may cause fretting-wear and even fatigue cracks. It is therefore important to understand the relevant two-phase flow-induced vibration mechanisms. Fluidelastic instabilities in cross-flow are known to cause the most severe vibration response in the U-bend region of steam generators. This paper presents test results of the vibration of a normal triangular tube bundle subjected to air-water cross-flow. The test section presents 31 flexible tubes. The pitch-to-diameter ratio of the bundle is 1.5, and the tube diameter is 38 mm. Tubes were flexible in the lift direction. Seven tubes were instrumented with strain gauges to measure their displacements. A broad range of void fractions (from 10% to 90%) and fluid velocities (up to 13 m/s) were tested. Fluidelastic instabilities were observed for void fractions between 10% and 60%. Periodic fluid forces were also observed. The results are compared with those obtained with the rotated triangular tube bundle, showing that the normal triangular configuration is more stable than the rotated triangular configuration.


Author(s):  
Shahab Khushnood ◽  
Zaffar M. Khan ◽  
M. Afzaal Malik ◽  
Zafarullah Koreshi ◽  
Mahmood Anwar Khan

Flow-induced vibration in steam generator and heat exchanger tube bundles has been a source of major concern in nuclear and process industry. Tubes in a bundle are the most flexible components of the assembly. Flow induced vibration mechanisms, like fluid-elastic instability, vortex shedding, turbulence induced excitation and acoustic resonance results in failure due to mechanical wear, fretting and fatigue cracking. The general trend in heat exchanger design is towards larger exchangers with increased shell side velocities. Costly plant shutdowns have been the motivation for research in the area of cross-flow induced vibration in steam generators and process exchangers. The current paper focuses on the development of a computer code (FIVPAK) for the design (natural frequencies, variable geometry, tube pitch & pattern, mass damping parameter, reduced velocity, strouhal and damage numbers, added mass, wear work rates, void fraction for two-phase, turbulence and acoustic considerations etc.) of tube bundles with respect to cross flow-induced vibration. The code has been validated against Tubular Exchanger Manufacturers (TEMA), Flow-Induced Vibration code (FIV), and results on an actual variable geometry exchanger, specially manufactured to simulate real systems. The proposed code is expected to prove a useful tool in designing a tube bundle and to evaluate the performance of an existing system.


Author(s):  
Paul Feenstra ◽  
Teguewinde Sawadogo ◽  
Bruce Smith ◽  
Victor Janzen ◽  
Helen Cothron

The tubes in the U-bend region of a recirculating type of nuclear steam generator are subjected to cross-flow of a two-phase mixture of steam and water. There is a concern that these tubes may experience flow-induced vibration, including the damaging effects of fluidelastic instability. This paper presents an update and results from a series of flow-induced vibration experiments performed by Canadian Nuclear Laboratories for the Electric Power Research Institute (EPRI) using the Multi-Span U-Bend test rig. In the present experiments, the main focus was to investigate fluidelastic instability of the U-tubes subjected to a cross-flow of air. The tube bundle is made of 22 U-tubes of 0.5 in (12.7 mm) diameter, arranged in a rotated triangular configuration with a pitch-over-diameter ratio of 1.5. The test rig could be equipped with variable clearance flat bar supports at two different locations to investigate a variety of tube and support configurations. The primary purpose of the overall project is to study the effect of flat bar supports on ‘in plane’ (‘streamwise’) instability in a U-tube bundle with realistic tube-to-support clearances or preloads, and eventually in two-phase flow conditions. Initially, the test rig was designed for tests in air-flow using an industrial air blower. Tests with two-phase Freon refrigerant (R-134a) will follow. This paper describes the test rig, experimental setup, and the challenges presented by simulating an accurate representation of current steam generator designs. Results from the first series of tests in air flow are described.


Author(s):  
Atef Mohany ◽  
Victor P. Janzen ◽  
Paul Feenstra ◽  
Shari King

This paper describes a test program that was developed to measure the dynamic response of a bundle of steam generator U-tubes with Anti-Vibration Bar (AVB) supports, subjected to Freon two-phase cross-flow. The tube bundle geometry is similar to the geometry used in preliminary designs for future CANDU® steam generators. This test program is one of the initiatives that Atomic Energy of Canada Limited (AECL) is undertaking to demonstrate that the tube support design for future CANDU steam generators meets the stringent requirements associated with a 60-year lifetime. In particular, the tests will address issues related to in- and out-of-plane fluidelastic instability and random turbulent excitation of a U-tube bundle with Anti-Vibration Bar (AVB) supports. Therefore, the measurements include tube vibration amplitudes and frequencies, work-rate due to impacting and sliding motion of the tubes against their supports, bulk process conditions and local two-phase flow properties. Details of the test rig set-up and the measurement techniques are described in the paper. Moreover, a numerical prediction of the U-tube vibration response to flow was performed with AECL’s PIPO-FE code. A summary of the numerical results is presented.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Atef Mohany ◽  
Victor P. Janzen ◽  
Paul Feenstra ◽  
Shari King

This paper describes a test program that was developed to measure the dynamic response of a bundle of steam generator U-tubes with anti-vibration bar (AVB) supports, subjected to Freon two-phase cross-flow. The tube bundle geometry is similar to the geometry used in preliminary designs for future CANDU steam generators. This test program is one of the initiatives that Atomic Energy of Canada Limited (AECL) is undertaking to demonstrate that the tube support design for future CANDU steam generators meets the stringent requirements associated with a 60-year lifetime. In particular, the tests will address issues related to in- and out-of-plane fluidelastic instability and random turbulent excitation of a U-tube bundle with AVB supports. Therefore, the measurements include tube vibration amplitudes and frequencies, work-rate due to impacting and sliding motion of the tubes against their supports, bulk process conditions and local two-phase flow properties. Details of the test rig setup and the measurement techniques are described in the paper. Moreover, a numerical prediction of the U-tube vibration response to flow was performed with AECL’s pipo-fe code. A summary of the numerical results is presented.


Sign in / Sign up

Export Citation Format

Share Document