Vibration Excitation Force Measurements in a Rotated Triangular Tube Bundle Subjected to Two-Phase Cross Flow

Author(s):  
C. Zhang ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting-wear or fatigue. Detailed vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures over a broad range of void fraction and mass fluxes. Both the dynamic lift and drag forces were measured with strain gage instrumented cylinders. The experiments revealed somewhat unexpected but significant quasi-periodic forces in both the drag and lift directions. The periodic forces appeared well correlated along the cylinder with the drag force somewhat better correlated than the lift forces. The periodic forces are also dependent on the position of the cylinder within the bundle.

2006 ◽  
Vol 129 (1) ◽  
pp. 21-27 ◽  
Author(s):  
C. Zhang ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting-wear or fatigue. Detailed vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures over a broad range of void fraction and mass fluxes. Both the dynamic lift and drag forces were measured with strain gage instrumented cylinders. The experiments revealed somewhat unexpected but significant quasi-periodic forces in both the drag and lift directions. The periodic forces appeared well correlated along the cylinder with the drag force somewhat better correlated than the lift forces. The periodic forces are also dependent on the position of the cylinder within the bundle.


Author(s):  
H. Senez ◽  
N. W. Mureithi ◽  
M. J. Pettigrew

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting wear or fatigue. Detailed flow and vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. Studies on this subject have already been done, providing results on flow regimes, fluidelastic instabilities, and turbulence-induced vibration. The spectrum of turbulence-induced forces has usually been expected to be similar to that in single-phase flow. However, a recent study, using tubes with a diameter larger than that in a real steam generator, showed the existence of significant quasi-periodic forces in two-phase flow. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air-water cross-flow, to simulate two-phase mixtures. The tube bundle here has the same geometry as that of a real steam generator. The quasi-periodic forces have now also been observed in this tube bundle. The present work aims to understand turbulence-induced forces acting on the tube bundle, providing results on drag and lift force spectra and their behaviour according to flow parameters, and describing their correlations. Detailed experimental test results are presented in this paper. Comparison is also made with previous measurements with larger diameter tubes. The present results suggest that quasi-periodic fluid forces are not uncommon in tube arrays subjected to two-phase cross-flow.


Author(s):  
Hubert Senez ◽  
Ste´phane E´tienne

Two-phase cross-flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting wear or fatigue. Studies on the subject, providing results on turbulence-induced displacement, fluid-elastic instabilities, and flow patterns have already been performed. It has been shown that the flow configuration plays an important role in the vibrations excitation mechanism. Previous studies showed the existence of unexpected quasi-periodic forces acting on a tube bundle subjected to two-phase cross-flow. The present work aims to understand the physical origin of these forces. A simple numerical model was developed to simulate two-phase cross-flow acting on a tube bundle. This model considers a continuous liquid potential flow across a tube bundle, with virtual bubbles being introduced in the flow. Three kinds of forces act on the bubbles: buoyancy forces, drag forces, and impact forces. These forces take place between two bubbles, or between a bubble and a cylinder. Two bubbles may coalesce if they hit each other, and conversely a bubble may split into two bubbles if the shear flow is strong enough. These local considerations on bubbles have global consequences on the flow configuration. Preliminary results show similarities between the numerical flow configuration and the experiments.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
C. Zhang ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting-wear or fatigue. Detailed vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. Some of this work has already been done. Somewhat unexpected but significant quasiperiodic forces in both the drag and lift directions were measured. These forces are generally larger in the drag direction. However, the excitation force frequency is relatively low (i.e., 3–6 Hz) and not directly dependent on flow velocity in the drag direction. On the other hand, much higher frequencies (up to 16 Hz) were observed in the lift direction at the higher flow velocities. The frequency appears directly related to flow velocity in the lift direction. The present work aims at (1) providing further evidence of the quasiperiodic lift force mechanism, (2) determining the effect of cylinder position on such quasiperiodic drag and lift forces, and (3) verifying the existence of quasiperiodic drag and lift forces in a more realistic larger tube array. The program was carried out with two rotated triangular tube arrays of different width subjected to air/water flow to simulate two-phase mixtures from liquid to 95% void fraction. Both the dynamic lift and drag forces were measured with strain gauge instrumented cylinders.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
C. Zhang ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting wear or fatigue. Detailed flow and vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. Some of this work has already been done. The distributions of both void fraction and bubble velocity in rotated-triangular tube bundles were obtained. Somewhat unexpected but significant quasiperiodic forces in both the drag and lift directions were measured. The present work aims at understanding the nature of such unexpected drag and lift quasiperiodic forces. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. Fiber-optic probes were developed to measure local void fraction. Both the dynamic lift and drag forces were measured with a strain gage instrumented cylinder. The investigation showed that the quasiperiodic drag and lift forces are generated by different mechanisms that have not been previously observed. The quasiperiodic drag forces appear related to the momentum flux fluctuations in the main flow path between the cylinders. The quasiperiodic lift forces, on the other hand, are mostly correlated to oscillations in the wake of the cylinders. The quasiperiodic lift forces are related to local void fraction measurements in the unsteady wake area between upstream and downstream cylinders. The quasiperiodic drag forces correlate well with similar measurements in the main flow stream between cylinders.


2005 ◽  
Vol 20 (4) ◽  
pp. 567-575 ◽  
Author(s):  
M.J. Pettigrew ◽  
C. Zhang ◽  
N.W. Mureithi ◽  
D. Pamfil

Author(s):  
E. S. Perrot ◽  
N. W. Mureithi ◽  
M. J. Pettigrew ◽  
G. Ricciardi

This paper presents test results of vibration forces in a normal triangular tube bundle subjected to air-water cross-flow. The dynamic lift and drag forces were measured with strain gage instrumented cylinders. The array has a pitch-to-diameter ratio of 1.5, and the tube diameter is 38 mm. A wide range of void fraction and fluid velocities were tested. The experiments revealed significant forces in both the drag and lift directions. Constant frequency and quasi-periodic fluid forces were found in addition to random excitation. These forces were analyzed and characterized to understand their origins. The forces were found to be dependent on the position of the cylinder within the bundle. The results are compared with those obtained with flexible cylinders in the same tube bundle and to those for a rotated triangular tube bundle. These comparisons reveal the influence of quasi-periodic forces on tube motions.


Author(s):  
G. Ricciardi ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase flow in power plant steam generators can induce tube vibrations, which may cause fretting-wear and even fatigue cracks. It is therefore important to understand the relevant two-phase flow-induced vibration mechanisms. Fluidelastic instabilities in cross-flow are known to cause the most severe vibration response in the U-bend region of steam generators. This paper presents test results of the vibration of a normal triangular tube bundle subjected to air-water cross-flow. The test section presents 31 flexible tubes. The pitch-to-diameter ratio of the bundle is 1.5, and the tube diameter is 38 mm. Tubes were flexible in the lift direction. Seven tubes were instrumented with strain gauges to measure their displacements. A broad range of void fractions (from 10% to 90%) and fluid velocities (up to 13 m/s) were tested. Fluidelastic instabilities were observed for void fractions between 10% and 60%. Periodic fluid forces were also observed. The results are compared with those obtained with the rotated triangular tube bundle, showing that the normal triangular configuration is more stable than the rotated triangular configuration.


Author(s):  
C. Zhang ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Recent experiments reveal that somewhat unexpected but significant quasi-periodic forces in both the drag and lift directions existed in a rotated triangular tube bundle subjected to two-phase cross flow. The quasi-periodic drag forces appear to be related to the momentum flux fluctuations in the main flow path between the cylinders. The quasi-periodic lift forces, on the other hand, are mostly correlated to the oscillation in the wake of the cylinders. The objective of this work is to develop semi-analytical models for correlating vibration excitation forces to dynamic characteristics of two-phase flow in a rotated triangular tube bundle and understanding the nature of vibration excitation forces. The relationships between the lift or drag forces and the dynamic characteristics of two-phase flow are established through fluid mechanics momentum equations. A model has been developed to correlate the void fraction fluctuation in the main flow path and the dynamic drag forces. A second model has been developed for correlating the oscillation in the wake of the cylinders and the dynamic lift forces. Although still preliminary, each model can predict the corresponding forces relatively well.


Author(s):  
W. G. Sim

Two-phase cross flow exists in many shell- and tube heat exchangers such as condensers, evaporators and nuclear steam generators. During the last two decades, research devoted to two-phase flow induced vibrations has increased, mainly driven by the nuclear industry. Flow-induced vibration excitation forces can cause excessive vibration which will result in long-term fretting-wear or fatigue. To avoid potential tube failures in heat exchangers, it is required for designer to have guidelines that incorporate flow-induced vibration excitation forces. The phenomenon of the vibration of tubes in two-phase flow is very complex and depends on factors which are nonexistent in single-phase flows. To understand the fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Pressure distributions generated by two-phase flow over tube surfaces yield more general information than the local velocity distribution. The pressure coefficient distribution obtained by experimental test has been evaluated.


Sign in / Sign up

Export Citation Format

Share Document