Study on Plastic Collapse Load of Steel Elliptical Heads Under Internal Pressure

Author(s):  
Liang Sun ◽  
Guide Deng ◽  
Jiufeng Zhao

A general formula for plastic collapse load of elliptical heads under internal pressure is useful in plastic collapse design and integrity assessment of pressure vessels. Plastic collapse load of steel elliptical heads with different shapes and thickness was computed by finite element analysis using elastic-perfectly plastic constitutive model, and a formula with maximum relative error less than 6% was derived from the numerical results. The formula is a function of the yield strength of materials, the ratio of major axis Di to minor axis 2hi and that of outer diameter Do to inner diameter Di, and is applicable to steel elliptical heads with Di/2hi within 1–2.6 and Do/Di within 1.001–1.300.

Author(s):  
Keming Li ◽  
Jinyang Zheng ◽  
Zekun Zhang ◽  
Chaohua Gu ◽  
Ping Xu

Abstract Ellipsoidal head is a common end closure of pressure vessel. Plastic collapse is a crucial failure mode considered in the design of ellipsoidal head subjected to internal pressure. Internally pressurized ellipsoidal head tends to be hemisphere (geometric strengthening) due to the effect of material hardening before plastic collapse occurs, which enhances load carrying capacity of ellipsoidal head. However, in the current pressure vessel codes such as ASME BPVC.VIII.1 and BPVC.VIII.2, EN 13445-3, and Chinese codes GB/T 150.3 and JB 4732, design methods based on linear elastic or perfectly-plastic theory are used to prevent plastic collapse of ellipsoidal head, leading to conservative design. Therefore, we developed a new method for preventing plastic collapse of ellipsoidal head under internal pressure, considering the effects of material hardening and geometric strengthening. The new method was developed on basis of our previous extensive work on finite element analysis and experiments for plastic collapse of internally pressurized ellipsoidal heads. The new method provides sufficient margin of safety by checking against the experimental bursting results of full-scale ellipsoidal heads with various geometries, various material types and various manufacturing methods. Compared with the design methods in the current pressure vessel codes, the new method shows an advantage of economy. This new method had been approved by China Standardization Committee on Boilers and Pressure Vessels, and at present it has been introduced into the Chinese pressure vessel code.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Shinji Konosu ◽  
Masato Kano ◽  
Norihiko Mukaimachi ◽  
Shinichiro Kanamaru

General components such as pressure vessels, piping, storage tanks, and so on are designed in accordance with the construction codes based on the assumption that there are no flaws in such components. There are, however, numerous instances in which in-service single or multiple volumetric flaws such as local thin areas are found in the equipment concerned. Therefore, it is necessary to establish a fitness for service rule, which is capable of evaluating these flaws. The procedure for a single flaw or multiple flaws has recently been proposed for assessing the flaws in the p-M (pressure-moment) diagram, which is an easy way to visualize the status of the component with flaws simultaneously subjected to internal pressure p and external bending moment M due to earthquake, etc. If the assessment point (Mr,pr) lies inside the p-M line, the component with flaws is judged to be safe. In this paper, numerous experiments and finite element analysis for a cylinder with external multiple volumetric flaws were conducted under (1) pure internal pressure, (2) pure external bending moment, and (3) subjected simultaneously to both internal pressure and external bending moment, in order to determine the plastic collapse load at volumetric flaws by applying the twice-elastic slope (TES) as recommended by ASME. It has been clarified that the collapse (TES) loads are much the same as those calculated under the proposed p-M line based on the measured yield stress.


Author(s):  
Shinji Konosu ◽  
Masato Kano ◽  
Norihiko Mukaimachi ◽  
Shinichiro Kanamaru

General components such as pressure vessels, piping, storage tanks and so on are designed in accordance with the construction codes based on the assumption that there are no flaws in such components. There are, however, numerous instances in which in-service single or multiple volumetric flaws (local thin areas; volumetric flaws) are found in the equipment concerned. Therefore, it is necessary to establish a Fitness for Service (FFS) rule, which is capable of judging these flaws. The procedure for a single flaw or multiple flaws has recently been proposed by Konosu for assessing the flaws in the p–M (pressure-moment) Diagram, which is an easy way to visualize the status of the component with flaws simultaneously subjected to internal pressure, p and external bending moment, M due to earthquake, etc. If the assessment point (Mr, pr) lies inside the p–M line, the component with flaws is judged to be safe. In this paper, numerous experiments and FEAs for a cylinder with external multiple volumetric flaws were conducted under (1) pure internal pressure, (2) pure external bending moment, and (3) subjected simultaneously to both internal pressure and external bending moment, in order to determine the plastic collapse load at volumetric flaws by applying the twice-elastic slope (TES) as recommended by ASME. It has been clarified that the collapse (TES) loads are much the same as those calculated under the proposed p–M line based on the measured yield stress.


2011 ◽  
Vol 341-342 ◽  
pp. 416-420 ◽  
Author(s):  
Mahdi Maarefdoust ◽  
Pooria Akbarzade

Limit load analysis of defect free thick walled pipes and cylinders subjected to internal pressure and combined internal pressure and axial loading is commonly performed as part of integrity assessment procedures for transmission pipelines and pressure vessels across the industry. Moreover the potential impact of environmental assisted or accidental damage that result in creation of surface defects and consequently affects the ability of vessel to withstand the applied loading conditions. This paper attempts to demonstrate the effect of surface defects on the limit load of cylinders by use of finite element method. ABAQUS software has been used for FE analysis and modeling. Approximate analytical solutions for benchmark model have been used for validation/verification of numerical results.


Author(s):  
Otto Theodor Iancu ◽  
Frank Otremba ◽  
Christian Sklorz

The prediction of the plastic collapse load of cylindrical pressure vessels is very often made by using expensive Finite Element Computations. The calculation of the collapse load requires an elastic-plastic material model and the consideration of non-linear geometry effects. The plastic collapse load causes overalls structural instability and cannot be determined directly from a finite element analysis. The ASME (2007) code recommends that the collapse load should be the load for which the numerical solution does not converge. This load can be only determined approximately if a expensive nonlinear analysis consisting of a very large number of sub steps is done. The last load sub step leading to a convergent solution will be taken as the critical load for the structure. In the instability regime no standard finite element solution can be found because of the lack of convergence of the numerical procedure. Other methods for the calculation of the allowable pressure proposed by the ASME code are the elastic stress analysis and the limit load analysis. In the present paper the plastic collapse load for a cylindrical pressure vessel is determined by an analytical method based on a linear elastic perfectly plastic material model. When plasticity occurs the material is considered as incompressible and the tensor of plastic strains is parallel to the stress deviator tensor. In that case the finite stress-strain relationships of Henkel can be used for calculating the pressure for which plastic flow occurs at the inside of the vessel wall or in the case of full plasticity in the wall. The analytical results are fully confirmed by finite element predictions both for axisymmetric and high costs three dimensional models. The analytical model can be used for fast predictions of the allowable load for the design of a large variety of pressure vessels under safety considerations. The accuracy of the predicted collapse load largely depends on the quality of the temperature dependent wall material data used both in the analytical and numerical calculations.


Author(s):  
Barry Millet ◽  
Kaveh Ebrahimi

Abstract This paper will clarify the point of transition where the behavior of the dish of a torispherical head goes from thin wall theory (collapse failure and membrane) to thick wall (burst failure) as the head dish radius to thickness ratios (L/t) gets smaller. There are several stated ratio limits for this transition. Three separate Welding Research Bulletins WRC 364 New Design Curves for Torispherical Heads[1], WRC 444 Buckling Criteria for Torispherical Heads Under Internal Pressure [3] and, WRC 501 Design of Torispherical and Ellipsoidal Heads Subjected to Internal Pressure[4] each provide a different definition of the transition point, that being 16.67, 15 and 20 respectively. This paper will review the actual test performed for L/t ratios from 20 down to 15 (which is the lowest ratio test run) and provide the results of a numerical desktop study in lieu of actual testing. Linear elastic, elastic perfectly plastic limit load and elastic plastic limit load finite element analysis will be parametrically run across many L/t ratios and the knuckle radius will be varied across the runs. The results will be reviewed to check through wall behavior to find the transition point of thin to thick wall behavior. These will also be compared against the existing ASME BVP Section VIII Division 2 [5] formulas.


2018 ◽  
Vol 192 ◽  
pp. 02023
Author(s):  
Sutham Arun ◽  
Thongchai Fongsamootr

This paper aims to analyze the plastic collapse moment of circumferential cracked cylinder under pure torsion using the NSC approach and 3D FE model. The material considered in this work is assumed to be elastic-perfectly plastic. The influences of geometric parameters of crack and cylinder, such as Rm/t, a/t and θ/π on solution of plastic collapse load are also investigated. The analysis shows that for the case of a/t < 0.75, the values of limit torsion moment can be estimated by NSC analysis which provides conservative results. However, for the case of deeper crack, a/t ≥ 0.75, the limit load solution predicted by NSC approach may not be safe, because the distribution of stress at yielding state does not correspond to the NSC assumption. Therefore, the approximated solution of collapse torsion moment for the case of deeper crack with a/t ≥ 0.75 is proposed based on FE analysis.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Shinji Konosu ◽  
Masato Kano ◽  
Norihiko Mukaimachi ◽  
Hiroyuki Komura ◽  
Hiroyuki Takada

This paper is based on work done to establish the validity of a simple engineering approach to assess plastic collapse for a vessel with a local thin area (LTA). The approach is based on a recently developed p-M (internal pressure ratio and external bending moment ratio) diagram, which is an easy way to visualize the status of a vessel with a LTA simultaneously subjected to internal pressure, p and external bending moment, M due to earthquake, etc. If the assessment point (Mr,pr) lies inside the p-M line, the vessel with the LTA is judged to be safe. Numerous experiments and finite element analyses for a cylinder with an external flaw were conducted under (1) pure internal pressure, (2) pure external bending moment, and (3) subjected simultaneously to both internal pressure and external bending moment, in order to determine the plastic initiation load and plastic collapse load by applying the twice-elastic slope (TES) as recommended by ASME. It has been clarified that the collapse (TES) loads are similar to those calculated under the proposed p-M line based on the measured yield stress. The p-M line adopted in the Ibaraki fitness for service (FFS) rule based on the specified minimum yield stress with a safety factor of 1.5 indicates that the safety margin for the plastic initiation loads at LTA is about 1.0–3.0, about 1.5–4.0 for the TES loads at LTA, and 2.5–6.5 for the plastic instability (break) loads.


Author(s):  
Shinji Konosu ◽  
Kenta Ogasawara ◽  
Kenji Oyamada

This paper develops a procedure for plastic collapse assessment of vessel (run pipe) - nozzle (branch pipe) intersections with an arbitrarily positioned local thin area (LTA) under different loading conditions, namely internal pressure, external moment on a nozzle applied along various directions with respect to the vessel main axis, and pure bending moment on a vessel. Although simplified procedures for plastic collapse assessment based on the p-M (internal pressure ratio and external bending moment ratio) diagram method have been previously proposed for straight cylindrical vessels and pipe bends with an LTA, very few studies have dealt with the determination of plastic collapse load for an LTA in the critical region of intersecting vessels subjected to internal pressure and external moment loading. This is likely due to the complexity of the stresses caused by the applied loads in the critical region, which arises from geometric discontinuities. In this paper, simple and empirical formulae for predicting conservative plastic collapse loads for an LTA in the critical region of the intersecting vessels are proposed based on the analytical results of stresses at defect-free vessel-nozzle intersections by using linear finite element analysis (FEA). Localized elastic stress retardation factors are taken into account in the evaluation by the results of a non-linear FEA. Consequently, a p-M diagram method is developed for application to vessel-nozzle intersections with an LTA.


1996 ◽  
Vol 118 (4) ◽  
pp. 429-433
Author(s):  
H. Chen ◽  
J. Jin ◽  
J. Yu

Results from finite element analysis were used to show that the stress index kσ and the nondimensionalized highly stressed hub length kh of a flat head with a round corner in a pressure vessel subjected to internal pressure are functions of three dimensionless parameters: λ ≡ h/dt, η ≡ t/d, and ρ ≡ r/t. Approximate formulas for estimating kσ and kh from λ, η, and ρ p are given. The formulas can be used for determining a suitable fillet radius for a flat head in order to reduce the fabricating cost and to keep the stress intensity at the fillet under an acceptable limit.


Sign in / Sign up

Export Citation Format

Share Document