Effects of Side-Grooves and 3-D Geometries on Compliance Solutions and Crack Size Estimations Applicable to C(T), SE(B) and Clamped SE(T) Specimens

Author(s):  
Gustavo Henrique B. Donato ◽  
Felipe Cavalheiro Moreira

Engineering procedures for design and integrity assessment of structural components containing crack-like defects are highly dependent on accurate fracture toughness and Fatigue Crack Growth (FCG) experimental data. Considering ductile and high toughness structural materials, crack growing curves (e.g. J-R curves) and FCG data (in terms of da/dN vs. ΔK or ΔJ) assumed paramount relevance. In common, these two types of mechanical properties severely depend on real-time and precise crack size estimations during laboratory testing. Optical measurement, electric potential drop or (most commonly) elastic unloading compliance (C) techniques can be employed. In the latter method, crack size estimation derives from C using a dimensionless parameter (μ) which incorporates specimen’s thickness (B), elasticity (E) and compliance itself. Plane stress and plane strain solutions for μ are available in several standards regarding C(T), SE(B) and M(T) specimens, among others. Current challenges include: i) real specimens are in neither plane stress nor plane strain-modulus vary between E (plane stress) and E/(1−ν2) (plane strain); ii) furthermore, side-grooves affect specimen’s stiffness, leading to an “effective thickness”. Results from Shen et al. and from current authors revealed deviations larger than 10% in crack size estimations following existing practices, especially for shallow cracks and side-grooved samples. In addition, compliance solutions for the emerging SE(T) specimens are not yet standardized. As a step in this direction, this work investigates 3-D and side-groove effects on compliance solutions applicable to C(T), SE(B) and clamped SE(T) specimens. Refined 3-D elastic FE-models provide Load-CMOD evolutions. The analysis matrix includes crack depths between a/W = 0.1 and a/W = 0.7 on 1/2T, 1T and 2T geometries. The 1T geometry is taken as the reference and presents width to thickness ratio W/B = 2. Side-grooves of 5%, 10% and 20% are considered. The results include compliance solutions incorporating 3D and side-groove effects to provide accurate crack size estimation during laboratory fracture and FCG testing. The proposals were verified against current standardized solutions and deviations were strongly reduced.

Author(s):  
Gustavo Henrique B. Donato ◽  
Felipe Cavalheiro Moreira

Fracture toughness and Fatigue Crack Growth (FCG) experimental data represent the basis for accurate designs and integrity assessments of components containing crack-like defects. Considering ductile and high toughness structural materials, crack growing curves (e.g. J-R curves) and FCG data (in terms of da/dN vs. ΔK or ΔJ) assumed paramount relevance since characterize, respectively, ductile fracture and cyclic crack growth conditions. In common, these two types of mechanical properties severely depend on real-time and precise crack size estimations during laboratory testing. Optical, electric potential drop or (most commonly) elastic unloading compliance (C) techniques can be employed. In the latter method, crack size estimation derives from C using a dimensionless parameter (μ) which incorporates specimen’s thickness (B), elasticity (E) and compliance itself. Plane stress and plane strain solutions for μ are available in several standards regarding C(T), SE(B) and M(T) specimens, among others. Current challenges include: i) real specimens are in neither plane stress nor plane strain - modulus vary between E (plane stress) and E/(1-ν2) (plane strain), revealing effects of thickness and 3-D configurations; ii) furthermore, side-grooves affect specimen’s stiffness, leading to an “effective thickness”. Previous results from current authors revealed deviations larger than 10% in crack size estimations following existing practices, especially for shallow cracks and side-grooved samples. In addition, compliance solutions for the emerging clamped SE(T) specimens are not yet standardized. As a step in this direction, this work investigates 3-D, thickness and side-groove effects on compliance solutions applicable to C(T), SE(B) and clamped SE(T) specimens. Refined 3-D elastic FE-models provide Load-CMOD evolutions. The analysis matrix includes crack depths between a/W=0.1 and a/W=0.7 and varying thicknesses (W/B = 4, W/B = 2 and W/B = 1). Side-grooves of 5%, 10% and 20% are also considered. The results include compliance solutions incorporating all aforementioned effects to provide accurate crack size estimation during laboratory fracture and FCG testing. All proposals revealed reduced deviations if compared to existing solutions.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Guowu Shen ◽  
William R. Tyson ◽  
James A. Gianetto ◽  
Jie Liang

In ASTM standard E1820, the crack size, a, may be evaluated during J-integral or crack-tip opening displacement (CTOD) resistance testing using the measured crack-mouth opening displacement (CMOD) elastic unloading compliance C (UC). The equation given to relate a to dimensionless compliance BCE (the product of thickness B, the compliance C and the modulus of elasticity E) in E1820 incorporates Young's modulus E rather than the plane-strain modulus E/(1 − υ2) where υ is Poisson's ratio. However, the three-dimensional (3-D) single edge bend (SE(B)) specimens used in fracture toughness tests are in neither plane-stress nor plane-strain condition, especially for B×B SE(B) specimens which are popular in characterizing fracture toughness of pipes with surface notches. In the present study, 3-D finite element analysis (FEA) was used to evaluate the CMOD compliance of plain- and side-grooved B×B SE(B) specimens with shallow and deep cracks. Crack sizes evaluated using plane-stress and plane-strain assumptions with the CMOD compliance calculated from FEA for the 3-D specimen were compared with the actual crack size of the specimens used in FEA. It was found that the errors using plane-strain or plane-stress assumptions can be as high as 5–10%, respectively, especially for shallow-cracked specimens. In the present study, an effective modulus with value between plane-stress and plane-strain is proposed and evaluated by FEA for the 3-D B×B SE(B) specimens for use in estimating the dimensionless compliance for crack size evaluation of B×B SE(B) specimens. It is shown that the errors in crack size evaluation can be reduced to 1% and 2% for plain-sided and side-grooved specimens, respectively, using this effective modulus. The effect of material removal to accommodate integral knife edges on the CMOD compliance was studied and taken into account in the crack length evaluations in the present study. Elastic unloading tests were conducted to measure the compliance of SE(B) specimens with two widths W and notch depths a/W from 0.1 to 0.5. Notch depths of the specimens evaluated by using the measured compliance and assumptions of plane stress, plane strain, and effective moduli were compared with the notch depths of the specimens used in the tests. It was found that best agreement of notch depth was achieved using the effective modulus.


Author(s):  
Guowu Shen ◽  
William R. Tyson ◽  
James A. Gianetto

In ASTM standard E1820, the single edge bend (SE(B)) geometry is one of those recommended for fracture toughness testing. The width to thickness (W/B) ratio recommended in E1820 for this specimen is 2. However, in certain cases, it is desirable to use specimens having alternative W/B ratios; the range of W/B suggested in E1820 is 1 to 4. In E1820, the crack size a may be evaluated during J-integral or CTOD resistance testing using the crack mouth opening displacement (CMOD) elastic unloading compliance C. The equation given to relate a to C using a dimensionless compliance BCE incorporates Young’s modulus E. For the three-dimensional (3-D) SE(B) specimens that are in neither plane stress nor plane strain condition, this parameter E may be considered as a normalizing parameter varying between extremes E (plane stress) and E/(1−ν2) (plane strain) depending on crack depth (a/W) and specimen W/B ratio. In the present study, 3-D finite element analysis (FEA) was used to evaluate the CMOD compliance of B×B SE(B) specimens with shallow and deep cracks and compared with that from Tada’s plane stress equation. Crack sizes evaluated using plane stress and plane strain assumptions with the 3-D CMOD compliance obtained from FEA were compared with the actual crack size of the specimens used in FEA. It was found that the errors in crack size using plane strain or plane stress assumptions can be larger than 5%, especially for shallow-cracked specimens. In the present study, an effective modulus with values between plane stress and plane strain is proposed and evaluated by FEA for the 3-D B×B SE(B) specimens. The values were fitted to a polynomial equation as a function of u = 1/(√(BCE)+1) for use in estimating the dimensionless compliance for crack size evaluation for B×B SE(B) specimens. It is shown that the errors in crack size evaluation can be significantly reduced using this effective modulus.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1166
Author(s):  
Stanislav Strashnov ◽  
Sergei Alexandrov ◽  
Lihui Lang

The present paper provides a semianalytic solution for finite plane strain bending under tension of an incompressible elastic/plastic sheet using a material model that combines isotropic and kinematic hardening. A numerical treatment is only necessary to solve transcendental equations and evaluate ordinary integrals. An arbitrary function of the equivalent plastic strain controls isotropic hardening, and Prager’s law describes kinematic hardening. In general, the sheet consists of one elastic and two plastic regions. The solution is valid if the size of each plastic region increases. Parameters involved in the constitutive equations determine which of the plastic regions reaches its maximum size. The thickness of the elastic region is quite narrow when the present solution breaks down. Elastic unloading is also considered. A numerical example illustrates the general solution assuming that the tensile force is given, including pure bending as a particular case. This numerical solution demonstrates a significant effect of the parameter involved in Prager’s law on the bending moment and the distribution of stresses at loading, but a small effect on the distribution of residual stresses after unloading. This parameter also affects the range of validity of the solution that predicts purely elastic unloading.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 145
Author(s):  
Sergei Alexandrov ◽  
Elena Lyamina ◽  
Yeong-Maw Hwang

The present paper concerns the general solution for finite plane strain pure bending of incompressible, orthotropic sheets. In contrast to available solutions, the new solution is valid for inhomogeneous distributions of plastic properties. The solution is semi-analytic. A numerical treatment is only necessary for solving transcendent equations and evaluating ordinary integrals. The solution’s starting point is a transformation between Eulerian and Lagrangian coordinates that is valid for a wide class of constitutive equations. The symmetric distribution relative to the center line of the sheet is separately treated where it is advantageous. It is shown that this type of symmetry simplifies the solution. Hill’s quadratic yield criterion is adopted. Both elastic/plastic and rigid/plastic solutions are derived. Elastic unloading is also considered, and it is shown that reverse plastic yielding occurs at a relatively large inside radius. An illustrative example uses real experimental data. The distribution of plastic properties is symmetric in this example. It is shown that the difference between the elastic/plastic and rigid/plastic solutions is negligible, except at the very beginning of the process. However, the rigid/plastic solution is much simpler and, therefore, can be recommended for practical use at large strains, including calculating the residual stresses.


2020 ◽  
Vol 37 ◽  
pp. 100-107
Author(s):  
Sergei Alexandrov ◽  
Yeau-Ren Jeng

Abstract A general plastic material under plane strain and plane stress is classified by a yield criterion that depends on both the first and second invariants of the stress tensor. The yield criterion together with the stress equilibrium equations forms a statically determinate system. This system is investigated in the principal lines coordinate system (i.e. the coordinate curves of this coordinate system coincide with trajectories of the principal stress directions). It is shown that the scale factors of the principal lines coordinate system satisfy a simple equation. Using this equation, a method for constructing the principal stress trajectories is developed. Therefore, the boundary value problem of plasticity theory reduces to a purely geometric problem. It is believed that the method developed is useful for solving a wide class of boundary value problems in plasticity.


Sign in / Sign up

Export Citation Format

Share Document