Improved Compliance Solutions for C(T), SE(B) and Clamped SE(T) Specimens Including Side-Grooves, Varying Thicknesses and 3-D Effects

Author(s):  
Gustavo Henrique B. Donato ◽  
Felipe Cavalheiro Moreira

Fracture toughness and Fatigue Crack Growth (FCG) experimental data represent the basis for accurate designs and integrity assessments of components containing crack-like defects. Considering ductile and high toughness structural materials, crack growing curves (e.g. J-R curves) and FCG data (in terms of da/dN vs. ΔK or ΔJ) assumed paramount relevance since characterize, respectively, ductile fracture and cyclic crack growth conditions. In common, these two types of mechanical properties severely depend on real-time and precise crack size estimations during laboratory testing. Optical, electric potential drop or (most commonly) elastic unloading compliance (C) techniques can be employed. In the latter method, crack size estimation derives from C using a dimensionless parameter (μ) which incorporates specimen’s thickness (B), elasticity (E) and compliance itself. Plane stress and plane strain solutions for μ are available in several standards regarding C(T), SE(B) and M(T) specimens, among others. Current challenges include: i) real specimens are in neither plane stress nor plane strain - modulus vary between E (plane stress) and E/(1-ν2) (plane strain), revealing effects of thickness and 3-D configurations; ii) furthermore, side-grooves affect specimen’s stiffness, leading to an “effective thickness”. Previous results from current authors revealed deviations larger than 10% in crack size estimations following existing practices, especially for shallow cracks and side-grooved samples. In addition, compliance solutions for the emerging clamped SE(T) specimens are not yet standardized. As a step in this direction, this work investigates 3-D, thickness and side-groove effects on compliance solutions applicable to C(T), SE(B) and clamped SE(T) specimens. Refined 3-D elastic FE-models provide Load-CMOD evolutions. The analysis matrix includes crack depths between a/W=0.1 and a/W=0.7 and varying thicknesses (W/B = 4, W/B = 2 and W/B = 1). Side-grooves of 5%, 10% and 20% are also considered. The results include compliance solutions incorporating all aforementioned effects to provide accurate crack size estimation during laboratory fracture and FCG testing. All proposals revealed reduced deviations if compared to existing solutions.

Author(s):  
Gustavo Henrique B. Donato ◽  
Felipe Cavalheiro Moreira

Engineering procedures for design and integrity assessment of structural components containing crack-like defects are highly dependent on accurate fracture toughness and Fatigue Crack Growth (FCG) experimental data. Considering ductile and high toughness structural materials, crack growing curves (e.g. J-R curves) and FCG data (in terms of da/dN vs. ΔK or ΔJ) assumed paramount relevance. In common, these two types of mechanical properties severely depend on real-time and precise crack size estimations during laboratory testing. Optical measurement, electric potential drop or (most commonly) elastic unloading compliance (C) techniques can be employed. In the latter method, crack size estimation derives from C using a dimensionless parameter (μ) which incorporates specimen’s thickness (B), elasticity (E) and compliance itself. Plane stress and plane strain solutions for μ are available in several standards regarding C(T), SE(B) and M(T) specimens, among others. Current challenges include: i) real specimens are in neither plane stress nor plane strain-modulus vary between E (plane stress) and E/(1−ν2) (plane strain); ii) furthermore, side-grooves affect specimen’s stiffness, leading to an “effective thickness”. Results from Shen et al. and from current authors revealed deviations larger than 10% in crack size estimations following existing practices, especially for shallow cracks and side-grooved samples. In addition, compliance solutions for the emerging SE(T) specimens are not yet standardized. As a step in this direction, this work investigates 3-D and side-groove effects on compliance solutions applicable to C(T), SE(B) and clamped SE(T) specimens. Refined 3-D elastic FE-models provide Load-CMOD evolutions. The analysis matrix includes crack depths between a/W = 0.1 and a/W = 0.7 on 1/2T, 1T and 2T geometries. The 1T geometry is taken as the reference and presents width to thickness ratio W/B = 2. Side-grooves of 5%, 10% and 20% are considered. The results include compliance solutions incorporating 3D and side-groove effects to provide accurate crack size estimation during laboratory fracture and FCG testing. The proposals were verified against current standardized solutions and deviations were strongly reduced.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Guowu Shen ◽  
William R. Tyson ◽  
James A. Gianetto ◽  
Jie Liang

In ASTM standard E1820, the crack size, a, may be evaluated during J-integral or crack-tip opening displacement (CTOD) resistance testing using the measured crack-mouth opening displacement (CMOD) elastic unloading compliance C (UC). The equation given to relate a to dimensionless compliance BCE (the product of thickness B, the compliance C and the modulus of elasticity E) in E1820 incorporates Young's modulus E rather than the plane-strain modulus E/(1 − υ2) where υ is Poisson's ratio. However, the three-dimensional (3-D) single edge bend (SE(B)) specimens used in fracture toughness tests are in neither plane-stress nor plane-strain condition, especially for B×B SE(B) specimens which are popular in characterizing fracture toughness of pipes with surface notches. In the present study, 3-D finite element analysis (FEA) was used to evaluate the CMOD compliance of plain- and side-grooved B×B SE(B) specimens with shallow and deep cracks. Crack sizes evaluated using plane-stress and plane-strain assumptions with the CMOD compliance calculated from FEA for the 3-D specimen were compared with the actual crack size of the specimens used in FEA. It was found that the errors using plane-strain or plane-stress assumptions can be as high as 5–10%, respectively, especially for shallow-cracked specimens. In the present study, an effective modulus with value between plane-stress and plane-strain is proposed and evaluated by FEA for the 3-D B×B SE(B) specimens for use in estimating the dimensionless compliance for crack size evaluation of B×B SE(B) specimens. It is shown that the errors in crack size evaluation can be reduced to 1% and 2% for plain-sided and side-grooved specimens, respectively, using this effective modulus. The effect of material removal to accommodate integral knife edges on the CMOD compliance was studied and taken into account in the crack length evaluations in the present study. Elastic unloading tests were conducted to measure the compliance of SE(B) specimens with two widths W and notch depths a/W from 0.1 to 0.5. Notch depths of the specimens evaluated by using the measured compliance and assumptions of plane stress, plane strain, and effective moduli were compared with the notch depths of the specimens used in the tests. It was found that best agreement of notch depth was achieved using the effective modulus.


Author(s):  
Masataka Yatomi ◽  
Noel P. O’Dowd ◽  
Kamran M. Nikbin

In this work a computational study of creep crack growth in a carbon manganese steel is presented. The constitutive behaviour of the steel is described by a power law creep model and the accumulation of creep damage is accounted for through the use of a well-established model for void growth in creeping materials. Two dimensional finite element analyses have been performed for a compact tension specimen and it has been found that the predicted crack growth rate under plane strain conditions approaches that under plane stress conditions at high C* levels. Furthermore it has been shown, both experimentally and numerically, that an increase in test temperature causes the convergence of the cracking rate to occur at higher values of C*. This trend may be explained by the influence of crack-tip plasticity, which reduces the relative difference in constraint between plane stress and plane strain conditions. The constraint effect has been quantified through the use of a two-parameter characterisation of the crack tip fields under creep conditions.


2015 ◽  
Vol 227 ◽  
pp. 3-6
Author(s):  
Mikolaj Lukaszewicz ◽  
Shen Gi Zhou ◽  
Alan Turnbull

Corrosion fatigue small, short and long crack growth rates have been determined for a 12Cr steam turbine steel in aerated 300 ppb Cl- + 300 ppb SO42- solution and in air at 90 °C. The crack growth rate for short and long cracks was monitored by direct current potential drop (DCPD) and for the small cracks by combining high resolution optical microscopy and DCPD. Comparison of the fatigue growth rate demonstrated that in solution the short crack growth rate was remarkably enhanced in comparison to long cracks, when the crack size is smaller than 250 μm. This enhancement was attributed to the electrochemical crack size effect associated with greater anodic polarisation of the short crack in such low conductivity solution. However, such enhanced growth was not observed for small cracks, which was rationalised on the basis of additional contribution of current from the pit limiting crack-tip polarisation.


Author(s):  
Guowu Shen ◽  
William R. Tyson ◽  
James A. Gianetto

In ASTM standard E1820, the single edge bend (SE(B)) geometry is one of those recommended for fracture toughness testing. The width to thickness (W/B) ratio recommended in E1820 for this specimen is 2. However, in certain cases, it is desirable to use specimens having alternative W/B ratios; the range of W/B suggested in E1820 is 1 to 4. In E1820, the crack size a may be evaluated during J-integral or CTOD resistance testing using the crack mouth opening displacement (CMOD) elastic unloading compliance C. The equation given to relate a to C using a dimensionless compliance BCE incorporates Young’s modulus E. For the three-dimensional (3-D) SE(B) specimens that are in neither plane stress nor plane strain condition, this parameter E may be considered as a normalizing parameter varying between extremes E (plane stress) and E/(1−ν2) (plane strain) depending on crack depth (a/W) and specimen W/B ratio. In the present study, 3-D finite element analysis (FEA) was used to evaluate the CMOD compliance of B×B SE(B) specimens with shallow and deep cracks and compared with that from Tada’s plane stress equation. Crack sizes evaluated using plane stress and plane strain assumptions with the 3-D CMOD compliance obtained from FEA were compared with the actual crack size of the specimens used in FEA. It was found that the errors in crack size using plane strain or plane stress assumptions can be larger than 5%, especially for shallow-cracked specimens. In the present study, an effective modulus with values between plane stress and plane strain is proposed and evaluated by FEA for the 3-D B×B SE(B) specimens. The values were fitted to a polynomial equation as a function of u = 1/(√(BCE)+1) for use in estimating the dimensionless compliance for crack size evaluation for B×B SE(B) specimens. It is shown that the errors in crack size evaluation can be significantly reduced using this effective modulus.


Author(s):  
Behrouz Haghgouyan ◽  
Ibrahim Karaman ◽  
Sameer Jape ◽  
Alexandros Solomou ◽  
Dimitris C. Lagoudas

Fracture behavior in nickel-titanium (NiTi) shape memory alloys (SMAs) subjected to mode-I, isothermal loading is studied using finite element analysis (FEA). Compact tension (CT) SMA specimen is modeled in Abaqus finite element suite and crack growth under displacement boundary condition is investigated for plane strain and plane stress conditions. Parameters for the SMA material constitutive law implemented in the finite element setup are acquired from characterization tests conducted on near-equiatomic NiTi SMA. Virtual crack closure technique (VCCT) is implemented where crack is assumed to extend when the energy release rate at the crack-tip becomes equal to the experimentally obtained material-specific critical value. Load-displacement curves and mechanical fields near the crack-tip in plane strain and plane stress cases are examined. Moreover, a discussion with respect to the crack resistance R-curves calculated using the load-displacement response for plane strain and plane stress conditions is presented.


Sign in / Sign up

Export Citation Format

Share Document