How Finite Element Calculations Improve Hyper Compressor Performance and Lifetime

Author(s):  
Nicole Retz ◽  
Andreas Allenspach

The basic design of actual hyper compressor was performed around 40 years ago, in a time when the use of computers was limited and most of the design calculations were made by hand. In our days most parts are significantly improved with the support of finite element calculations. In this paper the benefits of such an optimization will be highlighted by several examples like the compressor central valve, the flexible rod coupling or even the overall compressor vibrations. In addition the modeling of some for hyper compressors typical manufacturing processes like autofrettage will be discussed.

2002 ◽  
Vol 124 (4) ◽  
pp. 397-404 ◽  
Author(s):  
H. Estrada ◽  
I. D. Parsons

The design procedures for an innovative fiber-reinforced polymer (FRP) stub-flange joint are presented. The joint is intended for use with filament-wound pipes, and was developed to address some of the problems associated with current FRP joints. Detailed design guidelines for proportioning the joint are presented in this paper. The design calculations are relatively simple and compare well with more detailed finite element calculations.


Author(s):  
Marcel Escudier

In this chapter the wide array of engineering devices, from the kitchen tap (a valve) to supersonic aircraft, the basic design of which depends upon considerations of the flow of gases and liquids, is shown. Much the same is true of most natural phenomena from the atmosphere and our weather to ocean waves, and the movement of sperm and other bodily fluids. In this textbook a number of the concepts, principles, and procedures which underlie the analysis of any problem involving fluid flow or a fluid at rest are introduced. In this Introduction, examples have been selected for which, by the end of the book, the student should be in a position to make practically useful engineering-design calculations. These include a dam, a rocket motor, a supersonic aerofoil with shock and expansion waves, a turbojet engine, a turbofan engine, and the blading of a gas turbine.


2015 ◽  
Vol 1109 ◽  
pp. 167-170
Author(s):  
M. Wesam Al-Mufti ◽  
U. Hashim ◽  
Mijanur Rahman ◽  
Tijjani Adam ◽  
A.H. Azman ◽  
...  

The paper reported a study on an effect of the point charge of the bio-interface of a nanowire field biosensor on the conductance of the nanowire, through finite element calculations using COMSOL Multiphysics. A model with 5 layers starting with silicon nanowire of radius 10nm surrounded by a 2-nm oxide layer, and the oxide layer were surrounded by a 5 nm thick functional layer and 2 points charge were considered for this study and last layer is for electrolyte. The results shows that is different voltages with points change is that effected on the conductance of nanowire that is clear from different of potential distribution of point charge.


Author(s):  
L F Campanile ◽  
R Jähne ◽  
A Hasse

Classical beam models do not account for partial restraint of anticlastic bending and are therefore inherently inaccurate. This article proposes a modification of the exact Bernoulli–Euler equation which allows for an exact prediction of the beam's deflection without the need of two-dimensional finite element calculations. This approach offers a substantial reduction in the computational effort, especially when coupled with a fast-solving schema like the circle-arc method. Besides the description of the new method and its validation, this article offers an insight into the somewhat disregarded topic of anticlastic bending by a short review of the published theories and a selection of representative numerical results.


2016 ◽  
Vol 7 (1) ◽  
pp. 7-12 ◽  
Author(s):  
D. Huri

Non-linear finite element calculations are indispensable when important information of the material response under load of a rubber component is desired. Although the material characterization of a rubber component is a demanding engineering task, the changing contact range between the parts and the incompressibility behaviour of the rubber further increase the complexity of the investigations. In this paper the effects of the choice of the numerical material parameters (e.g. bulk modulus) are examined with regard to numerical stability, mesh density and calculation accuracy. As an example, a rubber spring is chosen where contact problem is also handled.


Sign in / Sign up

Export Citation Format

Share Document