Four Points Bending Test on an EPR Type DMW Pipe Containing a Through-Wall Defect: Experimental and Numerical Analysis From Small Specimens Until Pipe Scale

Author(s):  
M. Bourgeois ◽  
S. Chapuliot ◽  
S. Marie ◽  
O. Ancelet ◽  
Y. Kayser

Within the framework of European project STYLE [1], a fracture test on a pipe containing a through wall crack in a narrow gap Inconel Dissimilar Metals weld (welds named hereafter DMW) has been performed. The work is focusing on the Inconel - ferritic steel interface which is the weakest area of such welded pipes in front of ductile tearing. The study temperature is 300°C, which covers typical temperatures in components like hot pipes in the primary coolant system of pressurized water reactors. The four point bending test was carried out by the French Atomic Energy Commission and Alternative Energies (CEA), in order to study the mechanical properties and integrity of component such as the DMW pipes provided and designed by AREVA France. The observations made post-mortem showed a small 2.5 mm ductile tearing at the interface of Inconel and ferritic steel, and after this point, a large crack that has deviated from the interface to propagate in the Inconel and then in the stainless steel. The DMW Mock-up is presented with previous results concerning the mechanical characterizations of his constitutive materials. The second part of this paper is devoted to the four point bending test at 300°C: procedure, instrumentation and interpretation of large-scale test in terms of initiation and propagation of cracks. A comparison is made with tests performed at a smaller scale on multi-material CT specimens. The third part deals with first numerical analysis of fracture test. The results are interpreted on a small scale using finite element analysis to obtain the parameters of damage models that are needed for global approach. Finally, numerical approaches is presented and applied to simulate the fracture of the large-scale pipe. The aim of this paper is to propose and discuss the validity of new assessment methods of ductile propagation in a large scale pipe containing a through wall crack in a narrow gap dissimilar metal weld.

2017 ◽  
Vol 178 ◽  
pp. 497-511 ◽  
Author(s):  
Sutham Arun ◽  
Andrew H. Sherry ◽  
Mike C. Smith ◽  
Mohammad Sheikh

Author(s):  
Anna Dahl ◽  
Dominique Moinereau ◽  
Patrick Le Delliou ◽  
Willy Vincent

Abstract The 4-years European project ATLAS+ (Advanced Structural Integrity Assessment Tools for Safe long Term Operation) has been launched in June 2017. One of its objectives is to study the transferability of material ductile properties from small scale specimens to large scale components and validate some advanced tools for structural integrity assessment. The study of properties transferability is based on a wide experimental programme which includes a full set of fracture experiments conducted on conventional fracture specimens and large scale components (mainly pipes). Three materials are considered in the programme : a ferritic steel WB36 typical from secondary feed water line in German PWR reactors, an aged stainless steel austenitic weld representative of EPR design and a typical VVER austenitic dissimilar weld (DMW). This paper describes the experimental work conducted on the ferritic steel WB 36 (15NiCuMoNb5) and summarizes the experimental results available after 2 years of work. Numerous mechanical tests have been conducted on a wide panel of fracture mechanics specimens for a full characterization of the ferritic steel: Tensile properties, Hardness, Charpy Energy, pre-cracked Charpy PCC, Master curve on CT and SENT specimens, ductile tearing properties on CT and SENT specimens. In parallel, it is planned to test three 4PB large scale tests on pipings (FP1, FP2 and FP3) at room temperature on the EDF test facility with 3 configurations (shape, size and location) of cracks: through wall crack (TWC), internal and external ½ elliptical cracks. Progress of these large scale experiments is described including first results.


Author(s):  
Dominique Moinereau ◽  
Patrick Le Delliou ◽  
Elisabeth Keim ◽  
Tomas Nicak

Within the framework of the FP7 European project STYLE, a large scale experiment has been performed at EDF on a cladded ferritic pipe. The objective of such an experiment was to investigate transferability of material properties from small specimens to large scale components. The large scale experiment involves applying 4-point bending under displacement control at room temperature to a clad ferritic steel pipe with an internal surface crack. The goal of the experiment is to initiate ductile crack growth and track the resulting stable crack growth until the surface flaw fails by producing a through-wall crack. The test specimen is representative from a surge line consisting of a clad ferritic pipe with an outer diameter of 420 mm, length of 520 mm, and base metal wall thickness of 31 mm, with an internal austenitic stainless steel cladding layer of thickness 5 mm. The base metal is a low alloy 20MnMoNi55 steel (corresponding to the specifications of an SA 508 Grade 3, Class 1 steel), and the necessary extensions are made of a high strength ferritic steel. A wide range of instrumentation was implemented to provide data for mock-up behavior understanding and detect the ductile tearing initiation during the test. The test has been conducted with full success on the EDF 4 point bending test facility. After the experiment, samples have been taken from the mock-up for full SEM fractographic examinations of the fracture surface for identification of failure modes. The present paper describes the large scale experiment and presents the main experimental results and data. A synthesis of SEM fractographic examinations is also presented, to better understand the rupture behavior during the test.


2021 ◽  
Vol 1144 (1) ◽  
pp. 012039
Author(s):  
M A Iman ◽  
N Mohamad ◽  
A A A Samad ◽  
Steafenie George ◽  
M A Tambichik ◽  
...  

2021 ◽  
pp. 152808372199377
Author(s):  
Jalil Hajrasouliha ◽  
Mohammad Sheikhzadeh

In the interest of reducing the weight and also cost of blade skins, various automatic preform manufacturing processes were developed including tape laying, filament winding and braiding. Among them, the circular braiding process was found to be an efficient method in producing seamless preforms on mandrels with various geometries. In this regard, an attempt was made to produce a carbon fiber reinforced composite with the shape of NACA 23018 airfoil using a circular braiding machine. Thus, suitable wooden mandrels were manufactured using NACA 23018 airfoil coordinates, which were obtained by assuming the perimeter of 20 cm. Furthermore, both biaxially and triaxially braided preforms were produced and subsequently impregnated with epoxy resin through an appropriate fabrication method. To assess their performance, four-point bending test was carried out on samples. Ultimately, the elastic response of braided composite airfoils was predicted using a meso-scale finite element modeling and was validated with experimental results.


Sign in / Sign up

Export Citation Format

Share Document