Nonlinear FEA of a Corroded Pipe

Author(s):  
Venkata M. K. Akula

Analysis of pipelines subjected to corrosion is critical to ensure their integrity and safe operation. Although regulatory codes such as ASME, API, etc. can provide guidance in determining the fitness of a pipeline, often finite element analysis is needed to more accurately predict the structural response. In this paper, we present the techniques that could be used for performing buckling analysis of a pipe with a surface flaw. Several procedures, available in Abaqus, such as the nonlinear Newton-Raphson solver, the implicit dynamics solver, etc. are discussed in the context of predicting the collapse load. The assumptions associated with the use of each solver are presented along with a discussion on their predictive capabilities. Thereafter, parametric sensitivity analysis to study the influence of the design parameters on the collapse load is discussed. The sensitivity analysis requires automating the entire simulation workflow, including the flaw geometry, for predicting the collapse load.

2021 ◽  
Vol 9 (2) ◽  
pp. 159
Author(s):  
Zhongchi Liu ◽  
Sarat Chandra Mohapatra ◽  
C. Guedes Soares

A numerical model associated with wave–current interactions with a moored flexible cylindrical cage was developed based on the finite element method. An analytical model was formulated under the linearised wave theory and small structural response, and a semi-analytical solution was obtained using the Fourier Bessel series solution and least squares approximation method, along with a matching technique. The numerical results from the finite element analysis of the horizontal displacements for different design parameters under a uniform current were compared with the analytical model solutions. It was seen that they had a good level of agreement with their results. The effects of different current speeds and time on the cage shapes were analysed from the finite element results. Further, the mooring forces on the flexible cage for different values of the cage height and cage radius were also presented. The comparison of the results indicated that the numerical model results could be used with confidence in the design of a flexible cylindrical net cage for applications to offshore aquacultures.


2011 ◽  
Vol 199-200 ◽  
pp. 1308-1313 ◽  
Author(s):  
Tao Hu ◽  
Ping An Du ◽  
John H.L Ha ◽  
Jian Tao Liu

By studying a typical rectangle PCB, the design parameters affecting natural frequency of PCB are found in the paper. By theoretical deduction and finite element analysis, the sensitivity of the natural frequency of PCB with respect to the design parameters is analyzed, the influence of the design parameters on nature frequency is obtained, and some conclusions for structural optimization of PCB are drawn.


2013 ◽  
Vol 313-314 ◽  
pp. 1038-1041
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Chao Li

According to uncertainty of the design parameters for large span truss of installing wave-maker, in order to avoid the waste of materials,the truss is analyzed based on the finite element analysis software ANSYS to find out its weaknesses and various parts of the deformation. On the premise of ensuring the intensity and stiffness, the weight of the truss is reduced by adjusting its sizes and selecting different profiles, so as to achieve the optimization of the truss of installing wave-maker.


1986 ◽  
Vol 30 (4) ◽  
pp. 920-928
Author(s):  
Yoshinobu Maeda ◽  
Masafumi Mori ◽  
Sadami Tsutsumi ◽  
Toshihiro Chinzaka ◽  
Masataka Minoura ◽  
...  

2018 ◽  
Vol 167 ◽  
pp. 02017
Author(s):  
Yunsik Yang ◽  
Euy Sik Jeon ◽  
Dae Ho Park

Several studies have been conducted to prevent neck injury in rear-end collision. The headrest of the seat which suppresses the relative motion of the head and the torso can suppress the extension of the head, thereby alleviating the injury. The active headrest has a mechanism that supports the head by deploying the headrest at the rear-end collision. The spring remains compressed or twisted until a collision signal is generated and the headrest is deployed after the collision signal. Depending on the shape and deployment structure of the spring, a spring design with a high resilience that is acceptable to the headrest is required. In this paper, design parameter of spiral spring suitable for the structure of the developed headrest is selected, prototypes are fabricated, and development parameters such as development time and development distance are checked and optimal design parameters of the spiral spring are derived. The feasibility of the headrest with the designed spiral spring was verified by the finite element analysis.


2012 ◽  
Vol 215-216 ◽  
pp. 847-850
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Hong Jie Wang

In the condition of alternating impact ,the nut-supports subassembly is analyzed according to uncertainty of design parameters. Firstly, a three-dimensional (3-D) finite element (FE) model of the nut-supports subassembly is built and is meshed,and the constraints and loads are imposed.Secondly,the model of nut-supports was assembled using the software ANSYS to understand the stress distribution and various parts of the deformation of the nut-supports and its weak links in the harmonic forces.Finally,socket head cap screw has not enough pre-load in the condition of alternating impact and will be simplified.It is analyzed and checked whether it is cut or not; which provides the reference data for design and optimization of the wave maker.


Sign in / Sign up

Export Citation Format

Share Document