Finite Element Analysis of the Nut-Supports Subassembly Based on ANSYS

2012 ◽  
Vol 215-216 ◽  
pp. 847-850
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Hong Jie Wang

In the condition of alternating impact ,the nut-supports subassembly is analyzed according to uncertainty of design parameters. Firstly, a three-dimensional (3-D) finite element (FE) model of the nut-supports subassembly is built and is meshed,and the constraints and loads are imposed.Secondly,the model of nut-supports was assembled using the software ANSYS to understand the stress distribution and various parts of the deformation of the nut-supports and its weak links in the harmonic forces.Finally,socket head cap screw has not enough pre-load in the condition of alternating impact and will be simplified.It is analyzed and checked whether it is cut or not; which provides the reference data for design and optimization of the wave maker.

2013 ◽  
Vol 313-314 ◽  
pp. 1038-1041
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Chao Li

According to uncertainty of the design parameters for large span truss of installing wave-maker, in order to avoid the waste of materials,the truss is analyzed based on the finite element analysis software ANSYS to find out its weaknesses and various parts of the deformation. On the premise of ensuring the intensity and stiffness, the weight of the truss is reduced by adjusting its sizes and selecting different profiles, so as to achieve the optimization of the truss of installing wave-maker.


2012 ◽  
Vol 562-564 ◽  
pp. 1943-1946
Author(s):  
Yong Hu ◽  
Jin Gan Song ◽  
Qing Zou ◽  
Ke Zhu ◽  
Xiao Long Wang

Because both of the volume and the weight of the photoelectric platform are small, the structure of two frames and two axes is used in the photoelectric platform. As the key component of the photoelectric platform, the main frame should have sufficient strength and rigidity. In order to achieve this object, three-dimensional entity model of the main frame is established using CATIA software. Then the finite-element analysis of the model is finished with ANSYS Workbench. Based on the analysis results, the weak links of the main frame is found. Then these links are improved and the main frame is analyzed again. After improving the structure, the results of the finite-element analysis show that the main frame meets the requirements of design and has perfect overall performance.


Author(s):  
Sung Jin Yoon ◽  
Tae Jin Shin ◽  
Jae Sang Lee ◽  
Sang Moo Hwang

This paper describes in detail the deformation behavior of the rolls and strip predicted from the three-dimensional finite element analysis of skin-pass rolling. The predictions are made on the basis of the coupled analysis of elastic deformation of the rolls and elastic–plastic deformation of the strip. Predictions from the proposed finite element (FE) model are compared with experimental data from laboratory-scale cold rolling mills. Then, proposed are models for the prediction of the roll force profile and for the prediction of the residual stress profile. The prediction accuracy of the models is examined through comparison with the predictions from the FE model.


Aero Gas Turbine engines power aircrafts for civil transport application as well as for military fighter jets. Jet pipe casing assembly is one of the critical components of such an Aero Gas Turbine engine. The objective of the casing is to carry out the required aerodynamic performance with a simultaneous structural performance. The Jet pipe casing assembly located in the rear end of the engine would, in case of fighter jet, consist of an After Burner also called as reheater which is used for thrust augmentation to meet the critical additional thrust requirement as demanded by the combat environment in the war field. The combustion volume for the After burner operation together with the aerodynamic conditions in terms of pressure, temperature and optimum air velocity is provided by the Jet pipe casing. While meeting the aerodynamic requirements, the casing is also expected to meet the structural requirements. The casing carries a Convergent-Divergent Nozzle in the downstream side (at the rear end) and in the upstream side the casing is attached with a rear mount ring which is an interface between engine and the airframe. The mechanical design parameters involving Strength reserve factors, Fatigue Life, Natural Frequencies along with buckling strength margins are assessed while the Jet pipe casing delivers the aerodynamic outputs during the engine operation. A three dimensional non linear Finite Element analysis of the Jet pipe casing assembly is carried out, considering the up & down stream aerodynamics together with the mechanical boundary conditions in order to assess the Mechanical design parameters.


2011 ◽  
Vol 199-200 ◽  
pp. 187-192 ◽  
Author(s):  
Pu Xing ◽  
Jing Yun Zhao ◽  
Xiu Jie Yin

The inverted umbrella aerator is the key equipment of biological wastewater treatment technology, which have the effects of oxygenation, mixing and plug-flow. the design and optimization of the mixing impeller is most important to the efficiency of oxygenation.In this paper, the solid modeling and finite element analysis and optimal design of aerator blades was made based on the study of the oxygenation mechanism.Firstly, the working process of the blades have been studied through solid modeling, mesh generation and finite element analysis process, and the stress-strain finite element analysis was offered based on Nastran, which identified the weak links in the leaves. And more, the optimize and improve designs for the production was made,which set the foundation for the manufacture of the blades.


2011 ◽  
Vol 105-107 ◽  
pp. 168-171
Author(s):  
Dong Fang Hu ◽  
Wen Hui Liu

This paper shows the static strength analysis of the tractor front axle housing by using of the finite element analysis software ANSYS, visually shows equivalent stress and strain distribution and vertical displacement distribution of the front axle housing. At the same time it also shows the analysis results of the model processing, the results of accuracy and reliability, and the weak links of the structure. By analyzing the weakest link and the difference in strength between each node for the overall structure in the condition, it can provide a direction and theoretical basis for the design and optimization of geometric entities. And the results of the analysis may be as the basis for structural improvement. In this way, it can be verified that using computer virtual software for product development is positive.


Author(s):  
Benben Ma ◽  
Yichao Zhu ◽  
Fan Jin ◽  
Quan Ding ◽  
Xu Guo

The lightweight optimal design of bolted flange joint system without gaskets is still a challenging problem, mainly owing to two issues: the relatively large number of mutually dependent geometric design parameters and the complicated role played by the contact details between members. With these two issues properly addressed, this article aims for devising a concise formulation for lightweight optimal design of bolted joint systems without gaskets. After a systematic examination of the correlations between design parameters, the total number of free design variables is reduced to three: member thickness, bolt spacing, and bolt specification, respectively. Besides, a finite element analysis that can resolve more contact details between members is conducted, and the influencing factors on the pressure distribution at the member surface are thus identified, with a criterion for the system sealing failure incorporated. Based on the findings in this work, a novel design scheme for the joint system is proposed, and good agreement between our predictions and results obtained by a full three-dimensional finite element analysis is shown. The proposed approach can be used to optimize the design parameters of bolted joint systems considering sealing performance without heavy finite element computation and can find applications in many relevant engineering fields.


2013 ◽  
Vol 805-806 ◽  
pp. 1712-1715
Author(s):  
De Qiang Zhang ◽  
Yu Li ◽  
Jin Hua Li

Structural design and optimization of 200 liters large material barrels with Double L-ring are studied, Stacking stress analysis and optimization analysis in SolidWorks Simulation Finite Element Analysis plug-in three-dimensional model of the material barrel, Plug-in of Finite Element Analysis SolidWorks simulation is used to get the result of analysis for stacking stress, optimization and dropping test. Stress contours, strain contours, the stress data of optimization are obtained by function of static analysis and optimization. The result of analysis is very close to the results of the theoretical calculations. It shows that the optimization design to improve product quality and efficiency has a very important theoretical and practical value.


2014 ◽  
Vol 556-562 ◽  
pp. 1259-1262
Author(s):  
Meng Zhang ◽  
Mei Hong Liu ◽  
Lei Jiang

The general situation and the future development of ballast cleaner are summarized. The principleand structureof RM80 ballast cleaner is introduced. The three-dimensional model of the frame has been established. By finite element analysis software the structural changes of the frame has been analyzed. The weak links of the frame are identified and the improvement methods are put forward.


2012 ◽  
Vol 215-216 ◽  
pp. 607-611
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Xiu Ping Yang

According to uncertainty of the design parameters for the domestic wave-maker of flat-plate, the wave-frame is analyzed based on ANSYS to find out its weaknesses and various parts of the deformation in order to reduce the negative effects of the wave system.On the premise of ensuring the intensity and stiffness, the purpose is to reduce weight and to reduce the inertia force, so as to achieve the optimization of the wave-maker.


Sign in / Sign up

Export Citation Format

Share Document