Bonding Temperature Condition Dependence of Strength Improvement Effect by Decrease of Metal Thickness in Ceramic to Metal Joint System

Author(s):  
Masayoshi Tateno ◽  
Takashi Tominaga

This study provides effects of bonding temperature conditions on practical strength in ceramic to metal joint system made by two stages bonding process. Ceramic to metal joint system is required to reduce the residual stress near the edge of the interface and to improve bonding strength. The two stages bonding process, which was proposed in PVP2015-45822, can be a useful method to prevent the residual stress from increasing. This process consists of two stages, the first bonding process defined as a ceramic is bonded to thin metal layer at high temperature and the secondary process defined as a thick metal is bonded to the thin metal layer of the joint at lower temperature. It is necessary to provide effects of thickness of thin metal layer on the practical bonding strength in various combinations of the first and the secondary bonding temperature conditions. Past experimental results showed the practical bonding strength would be dominated by the residual stress near the edge of the interface between the thin metal layer and the ceramic. The residual stress can be associated with the first and/or the secondary bonding temperature conditions. Setting the optimum metal thickness improves the bonding strength independent of the bonding temperature conditions in the limited conditions. This paper provided dependence of the optimum metal layer thickness on the first and the secondary bonding temperature conditions was clarified experimentally. It also found effective metal thickness, which is capable of strengthening the siliconnitride to nickel joint system, in the combination of the first bonding temperature ranged over from 880°C to 980°C and the secondary bonding temperature ranged over from 600°C to 700°C. It appeared the first bonding temperature and the secondary one are set at the higher, the optimum metal thickness becomes smaller. The result showed that decreasing metal thickness possesses similar effect to decreasing bonding temperature for reducing the thermal residual stress. Reducing the residual stress is capable of strengthening the part of the edge of the interface on the ceramic side. Setting the metal layer thinner should be applied for producing the high strength ceramic to metal joint system. The two stages bonding process can contribute to achieve the high strength bonded dissimilar materials by setting the optimum thin metal thickness.

Author(s):  
Masayoshi Tateno ◽  
Takahiro Miura

This study provides effects of metal thickness on bonding tensile strength of ceramic to metal joint based on numerical and experimental analyses. Thermal elastoplastic FEA was carried out to clarify effects of the metal side thickness on the stress distribution near the edge of the interface on ceramic side by changing metal side thickness each bonded silicon nitride to nickel joint system. It was confirmed the stress distribution on the ceramic of the joint system depends on the metal side thickness based on the FEM results. Decreasing of metal thickness reduces the intensity of the stress near the edge of the interface on ceramics side. It can be effective for reduction of the residual stress near the edge of the interface to use thin metal layer in the ceramic to metal joint. Reduction effects on the residual stress were confirmed by using two stages of bonding processing. This process used in this experiment consists of two stages, first bonding process as the ceramic are bonded to thin layer metal at high temperature, and secondary process as thick metal are bonded to the thin metal layer of the joint specimen at lower temperature than first stage. The bonding tensile strength of the joint specimens manufactured from the two stages bonding processe was evaluated experimentally. It appears that setting a ratio of metal thickness to length of the interface to approximate tm/W=0.08 achieves maximum bonding tensile strength. Effects of metal thickness on bonding tensile strength of ceramic to metal joint are confirmed based on numerical and experimental results.


Author(s):  
Masayoshi Tateno ◽  
Eiichiro Yokoi

This study provides information on the dependence of bonding temperature conditions on metal thickness effects in bonded dissimilar materials as a composite material system. Effects of metal thickness on the bonding strength were confirmed each bonding temperature condition by using silicon-nitride and nickel to confirm for each joint manufactured by a bonding method, two stages bonding process. This process used in this experiment consists of two stages, first bonding process as the ceramic is bonded to thin layer metal at high temperature, and secondary process as thick metal is bonded to the thin metal layer of the joint at lower temperature than first stage’s one. Bonding tensile strength of the joint specimen was evaluated experimentally. The bonding strength was dominated by the residual stress near the edge of the interface on ceramic side. The maximum bonding strength appears at optimum metal thickness. It shows that the optimum metal thickness depends on the first temperature condition. Reduction of the residual stress was considered based on the experimental and numerical results. Two stages bonding process can be applied for high strength bonded dissimilar materials as useful engineering application by setting optimum metal thickness each bonding temperature condition.


MRS Advances ◽  
2020 ◽  
Vol 5 (33-34) ◽  
pp. 1765-1774
Author(s):  
Shunsuke Muraoka ◽  
Masayoshi Tateno

AbstractResidual stress can considerably weaken systems with ceramics-to-metal joints. Herein, we investigate the dependence of bonding strength and residual stress variation of a ceramics-to-metal joint system on the interface wedge angle and bonding temperature condition. First, disparity between large-scale displacement models with varying work-hardening parameters was confirmed using thermal elastoplastic Finite Element Method (FEM) analysis. Each interface wedge shape was set to a plane surface to compare FEM results to experimental results related to the effect of the interface wedge angle on the practical bonding strength. The experimental results were specifically for a system consisting of Si3N4-WC/TiC/TaC bonded to Ni plate. The effects of the wedge angle of the metal side on residual stress near the interface edge were numerically predicted using FEM models. The interface wedge angles for this model, φ1 and φ2, were defined using the configuration angle between the interface and free surfaces of both materials. The numerical results showed that the stress σr on the free surface of the ceramic side was concentrated near the interface edge at which discontinuity in the stress state is generated. Dependence of the residual stress variation on both the wedge angle and temperature conditions can be predicted. It was confirmed that the bonding strength improves with decreasing residual stress in geometrical conditions. Therefore, residual stress appears to be a predominant factor affecting bonding strength. The observed fracture pattern showed that the fracture originated near the interface edges, after which small cracks propagated on the ceramic side. The residual stress is presumed to dominate bonding strength as the fracture occurred near the interface edge of the ceramic side. Results showed that the maximum bonding strength appears at the geometrical condition where the fracture pattern changes to φ2 lower than 90° of joint bonded at 980 °C. Therefore, the optimum interface wedge angle depends on a combination of materials and bonding temperature conditions, because the weak point of the bonded joint system will affect the stiffness balance of both materials and the adhesion power of the bonded interface.


Author(s):  
Yan Zhang ◽  
YuanBo Bi ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract As two important industrial manufacturing materials, titanium alloys and stainless steel have their own advantages and disadvantages in terms of physical, chemical, and mechanical properties. The field of materials manufacturing has witnessed efforts to develop technical processes that can properly combine these two alloy types, aiming to effectively use their respective advantages. The welding technology for Ti alloy and stainless steel, as a research topic with broad prospects, is comprehensively and deeply analyzed in this review. The current research progress in this field was analyzed from different process perspectives such as fusion welding, brazing, diffusion welding, friction welding, explosive welding and vacuum hot-rolling welding. The results of the review showed that the greatest challenges of fusion welding are low ductility of the material, high residual stress, high cooling rate, and the formation of numerous brittle Ti-Fe intermetallics. By using appropriate intermediate materials between these two materials, the residual stress and brittle intermetallics near the interface of the transition joint can be minimised by solving the thermal expansion mismatch, reducing the bonding temperature and pressure, and suppressing the diffusion of elements such as Ti and Fe.


2014 ◽  
Vol 996 ◽  
pp. 283-288 ◽  
Author(s):  
Esther Held ◽  
Simone Schuster ◽  
Jens Gibmeier

The incremental hole-drilling method is a widely used technique to determine residual stress depth profiles in technical components. Its application is limited in respect to the components geometry, for instance the components thickness. In this paper, a direct correction of the measured strain relaxations is proposed to consider the impact of deviant geometries, here the component thickness, on the residual stress evaluation that moreover, allows the application of commercially available evaluation software. The herein proposed approach is based on finite element simulation of the incremental hole drilling. The simulated strain relaxations for thin metal sheets are evaluated with an algorithm as used in commercially available evaluation software (i) for uncorrected data as well as (ii) for strain data corrected by the proposed correction procedure. It is shown that the correction approach leads to a significant improvement of the measurement accuracy. Further, by means of the approach residual stress depth profiles in thin metal sheets can be as usual determined using commercial evaluation software for the incremental hole-drilling method regardless of the algorithm used, i.e. differential or integral.


1990 ◽  
pp. 353-362 ◽  
Author(s):  
Masanori Kurita ◽  
Makoto Sato ◽  
Ikuo Ihara ◽  
Akira Saito

Author(s):  
Vitalii Polovyi ◽  
Kostrobiy Petro

This paper proposes a model that takes into account the discretization of the Fermi wave vector and energy levels, as well as the condition of electroneutrality when investigating the influence of metal thickness on the spectrum of SPPs waves in heterogeneous dielectric-metal-dielectric structures.


2015 ◽  
Vol 117 (16) ◽  
pp. 165302 ◽  
Author(s):  
Paulius Ragulis ◽  
Rimantas Simniškis ◽  
Žilvinas Kancleris

Sign in / Sign up

Export Citation Format

Share Document