Research on Weight-Reduced Optimization Design of Large Nuclear Power Low Pressure Cylinder

Author(s):  
Yifeng Hu ◽  
Xingzhu Ye ◽  
Gang Chen

Steam turbines need to be safer and more reliable when used in nuclear power plants. In order to ensure long-term reliability of nuclear power equipment, a high safety factor is usually adopted in the design of low-pressure (LP) inner casing of steam turbines. It not only leads to larger self-weight of LP outer casings and fundamental load, but also causes higher manufacturing and transportation costs. In this paper, the stress and deformation behaviors of the LP outer casings of steam turbines are first evaluated using the numerical finite element analysis. Then, two optimization design methods, size optimization and topology optimization are used to conduct the weight reduced optimization design of inner casing, in combination with the design standards, so that the structural efficiency and performance of LP inner casings are achieved. At the same time, the self-weight and related costs are also greatly reduced. This study proposes a more optimized structural design of LP inner casings of steam turbines, and it offers considerable economic benefits.

Author(s):  
Deqi Yu ◽  
Jiandao Yang ◽  
Wei Lu ◽  
Daiwei Zhou ◽  
Kai Cheng ◽  
...  

The 1500-r/min 1905mm (75inch) ultra-long last three stage blades for half-speed large-scale nuclear steam turbines of 3rd generation nuclear power plants have been developed with the application of new design features and Computer-Aided-Engineering (CAE) technologies. The last stage rotating blade was designed with an integral shroud, snubber and fir-tree root. During operation, the adjacent blades are continuously coupled by the centrifugal force. It is designed that the adjacent shrouds and snubbers of each blade can provide additional structural damping to minimize the dynamic stress of the blade. In order to meet the blade development requirements, the quasi-3D aerodynamic method was used to obtain the preliminary flow path design for the last three stages in LP (Low-pressure) casing and the airfoil of last stage rotating blade was optimized as well to minimize its centrifugal stress. The latest CAE technologies and approaches of Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA) and Fatigue Lifetime Analysis (FLA) were applied to analyze and optimize the aerodynamic performance and reliability behavior of the blade structure. The blade was well tuned to avoid any possible excitation and resonant vibration. The blades and test rotor have been manufactured and the rotating vibration test with the vibration monitoring had been carried out in the verification tests.


Author(s):  
Dale E. Matthews ◽  
Ralph S. Hill ◽  
Charles W. Bruny

ASME Nuclear Codes and Standards are used worldwide in the construction, inspection, and repair of commercial nuclear power plants. As the industry looks to the future of nuclear power and some of the new plant designs under development, there will be some significant departures from the current light water reactor (LWR) technology. Some examples are gas-cooled and liquid metal-cooled high temperature reactors (HTRs), small modular reactors (SMRs), and fusion energy devices that are currently under development. Many of these designs will have different safety challenges from the current LWR fleet. Variations of the current LWR technology are also expected to remain in use for the foreseeable future. Worldwide, many LWRs are planned or are already under construction. However, technology for construction of these plants has advanced considerably since most of the current construction codes were written. As a result, many modern design and fabrication methods available today, which provide both safety and economic benefits, cannot be fully utilized since they are not addressed by Code rules. For ASME Nuclear Codes and Standards to maintain and enhance their position as the worldwide leader in the nuclear power industry, they will need to be modernized to address these items. Accordingly, the ASME Nuclear Codes and Standards organizations have initiated the “2025 Nuclear Code” initiative. The purpose of this initiative is to modernize all aspects of ASME’s Nuclear Codes and Standards to adopt new technologies in plant design, construction, and life cycle management. Examples include modernized finite element analysis and fatigue rules, and incorporation of probabilistic and risk-informed methodology. This paper will present the vision for the 2025 ASME Nuclear Codes and Standards and will discuss some of the key elements that are being considered.


Author(s):  
C-J Liao ◽  
W-F Huang ◽  
Y-M Wang ◽  
S-F Suo ◽  
X-F Liu

The study on the mechanism and performance of the mechanical seals in reactor coolant pumps (RCPs) is very important for the safe operations of pressurized water reactor power plants. By exploring the operating mechanism of the first seal of the hydrostatic mechanical seal in RCPs, an analytical fluid–solid strong-interaction model of the seal is proposed in this article. The model holds that the mechanical deformations of the seal assembly are dominated by the deflections of the seal rings, and this idea is demonstrated by the numerical simulation result of a fluid–solid interaction (FSI) model. Using the analytical FSI model, the regularity that the leakage rate of the first seal varies with the differential pressure in a RCP is obtained, and compared with the operational data, which is used to verify the model. Based on the understanding of the reliability of the seal, a dimensionless parameter Λ that acts as an attribute to the reliability is proposed in this article. Using the analytical FSI model and Λ as the optimization algorithm and optimization object, respectively, the optimum designs about the seal faceplateconfigurations are performed. Also, the specific optimization conclusions are given simultaneously.


2016 ◽  
Vol 7 (2) ◽  
pp. 42-49
Author(s):  
Nick Shykinov ◽  
Robert Rulko ◽  
Dariusz Mroz

Abstract In the context of energy demands by growing economies, climate changes, fossil fuel pricing volatility, and improved safety and performance of nuclear power plants, many countries express interest in expanding or acquiring nuclear power capacity. In the light of the increased interest in expanding nuclear power the supply chain for nuclear power projects has received more attention in recent years. The importance of the advanced planning of procurement and manufacturing of components of nuclear facilities is critical for these projects. Many of these components are often referred to as long-lead items. They may be equipment, products and systems that are identified to have a delivery time long enough to affect directly the overall timing of a project. In order to avoid negatively affecting the project schedule, these items may need to be sourced out or manufactured years before the beginning of the project. For nuclear facilities, long-lead items include physical components such as large pressure vessels, instrumentation and controls. They may also mean programs and management systems important to the safety of the facility. Authorized nuclear operator training, site evaluation programs, and procurement are some of the examples. The nuclear power industry must often meet very demanding construction and commissioning timelines, and proper advanced planning of the long-lead items helps manage risks to project completion time. For nuclear components there are regulatory and licensing considerations that need to be considered. A national nuclear regulator must be involved early to ensure the components will meet the national legal regulatory requirements. This paper will discuss timing considerations to address the regulatory compliance of nuclear long-lead items.


Author(s):  
M. A. Gotovsky ◽  
V. F. Ermolov ◽  
V. E. Mikhailov ◽  
Yu G. Sukhorukov ◽  
N. N. Trifonov

Now in Russia a new NPP “Brest – OD - 300” is developing which is to become a head in a series of fast reactors cooled by liquid lead or lead-bismuth alloy. Russian abbreviation OD is translated as Pilot-Demonstrational. The ideas are developed to use in this power plant deaeratorless thermal circuit. Such the schemes are widely and successfully used for conventional power plants in Russia. Deaeratorless thermal schemes are based on the use of direct contact low-pressure reheaters. These reheaters have deaeration ability. Such schemes improve power plants efficiency by 1.5 %. Some other deaerator functions are distributed among other elements of plant. In particular, the presence of an external, independent supply of water, which is available at nuclear power plants and much higher than the supply of water in the deaerator. Danger of return flow exists for direct-contact low pressure reheaters. But its design allows to eliminate completely the possibility of dangerous return flow. Compliance with safety was verified by calculation and in the operated power plants.


Author(s):  
Tae Jin Kim ◽  
Yoon-Suk Chang

When a sudden rupture occurs in high energy lines such as MSL (Main Steam Line) and safety injection line of nuclear power plants, ejection of inner fluid with high temperature and pressure causes blast wave, and may lead to secondary damage of adjacent major components and/or structures. The objective of this study is to assess integrity of containment wall and steam generator due to the blast wave under a postulated high energy line break condition at the MSL piping. In this context, a preliminary analysis was conducted to examine the blast wave simulation using coupled Eulerian-Lagrangian technique. Subsequently, a finite element analysis was carried out to assess integrity of the structures. As typical results, strain and stress values were calculated at the containment wall and steam generator, which did not exceed their failure criteria.


Sign in / Sign up

Export Citation Format

Share Document