The Effect of a Low Constraint Geometry on Measured T0 Values for a Nuclear Reactor Pressure Vessel Ferritic Steel

Author(s):  
Geena K. Rait ◽  
Catrin M. Davies ◽  
Stephen J. Garwood

Current requirements for assessing the fracture toughness of reactor pressure vessel (RPV) ferritic steels are potentially overly conservative due to the employment of high constraint geometries such as compact tension (C(T)) or single edge notch bend, SEN(B), specimens for material testing. These high constraint conditions are not representative of the actual conditions experienced by the RPV in service. If this conservatism could be reduced, more appropriate predictions for RPV lifetime extension could become a possibility. In this study, a known low constraint geometry, single edge notch tension, SEN(T), has been tested alongside the higher constraint SEN(B) specimen in order to compare measured T0 and fracture toughness values for both cases. Finite element analyses have also been conducted for both geometries in order to measure T-stress and calculate Q values thereby allowing quantification of the level of constraint for both geometries. Eight SEN(B) and eight SEN(T) specimens were tested with dimensions 24 × 254 × 96 mm and 20 × 20 × 200 mm, respectively. Testing was conducted at sub-zero temperatures, as close to the T0 as possible, in accordance with the guidelines presented in ASTM E1921-17a. Contrary to expected behaviour the SEN(T) specimen indicated a higher (less negative) T0 then the SEN(B) specimen. The reason for these results are explored in this paper.

1982 ◽  
Vol 68 (8) ◽  
pp. 1032-1039 ◽  
Author(s):  
Tsuneo KODAIRA ◽  
Nobuya NAKAJIMA ◽  
Masakatsu MATSUMOTO ◽  
Kiyoshi FUKAYA

Author(s):  
Zhong-An Chen ◽  
Zhen Zeng ◽  
Yuh J. Chao

Nuclear reactor pressure vessel (RPV) steels degrade due to neutron irradiation during normal operation. As a result, the ductile-brittle transition curve of the steel shifts to higher temperature which decreases operation margins in both the temperature and pressure. The loss of these margins however can be offset somewhat by appealing to arguments based on constraint of potential/postulated shallow cracks. In this paper, we demonstrate that the fracture toughness values for ASME postulated shallow flaws are higher than those determined from high constraint, standard deep cracked test specimens. The J-A2 three-term solution is used to characterize the crack-tip stress field where J represents the level of loading and A2 quantifies the level of constraint. It is shown that shallow (deep) flaws have lower (higher) constraint and A2. Based on the RKR cleavage model, procedures to quantify the temperature shift between specimens with different constraint levels are developed. The experimental data by Sherry et al. [1] for the A533B RPV steel are used to demonstrate the procedure and it is shown that the ductile-brittle transition curve shifts to lower temperature from high constraint to low constraint specimens.


Author(s):  
Masaki Shimodaira ◽  
Tohru Tobita ◽  
Hisashi Takamizawa ◽  
Jinya Katsuyama ◽  
Satoshi Hanawa

Abstract For structural integrity assessment of the reactor pressure vessel (RPV) in JEAC 4206-2016, it is required that the fracture toughness (KJc) be higher than the stress intensity factor at the crack tip of a postulated under-clad crack (UCC) near the inner surface of RPV steel under the pressurized thermal shock event. Previous analytical studies showed a low constraint effect at the crack tip of an UCC, compared with that of a normal surface crack. Such a low constraint effect may increase the apparent KJc. In this study, we performed three-point bending (3PB) fracture toughness tests and finite element analysis (FEA) for RPV steel containing an UCC or a surface crack to quantitatively investigate the effect of cladding on the KJc. The FEAs considering the anisotropic property of the cladding successfully reproduced the load vs. load-line displacement curves obtained from the tests. We found that the apparent KJc for the UCC was considerably higher than that for the surface crack. FEA also showed that the constraint effect for the 3PB test specimen with the UCC was lower than that for the specimen with the surface crack owing to the cladding. Thus, a low constraint effect from an UCC may increase the apparent KJc.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Yoosung Ha ◽  
Tohru Tobita ◽  
Takuyo Ohtsu ◽  
Hisashi Takamizawa ◽  
Yutaka Nishiyama

The applicability of miniature compact tension (Mini-C(T)) specimens to fracture toughness evaluation of neutron-irradiated reactor pressure vessel (RPV) steels was investigated. Three types of RPV steels neutron-irradiated to a high-fluence region were prepared and manufactured as Mini-C(T) specimens according to Japan Electric Association Code (JEAC) 4216-2015. Through careful selection of the test temperature by considering previously obtained mechanical properties data, valid fracture toughness, and reference temperature (To) was obtained with a relatively small number of specimens. Comparing the fracture toughness and To values determined using other larger specimens with those determined using the Mini-C(T) specimens, To values of both unirradiated and irradiated Mini-C(T) specimens were found to be the acceptable margin of error. The scatter of 1T-equivalent fracture toughness values of both unirradiated and irradiated materials obtained using Mini-C(T) specimens did not differ significantly from the values obtained using larger specimens. The correlation between the Charpy 41 J transition temperature (T41J) and the To values agreed very well with that of the data in the literature, regardless of specimen size and fracture toughness of the materials before irradiation. Based on these findings, it was concluded that Mini-C(T) specimens can be applied to fracture toughness evaluation of neutron-irradiated materials without significant specimen size dependence.


Author(s):  
Masaki Shimodaira ◽  
Tohru Tobita ◽  
Hisashi Takamizawa ◽  
Jinya Katsuyama ◽  
Satoshi Hanawa

Abstract According to JEAC4206-2016, in the structural integrity assessment of a reactor pressure vessel (RPV), the fracture toughness (KJc) should be higher than the stress intensity factor at the crack tip of a postulated underclad crack (UCC) near the inner surface of the RPV during a pressurized thermal shock event. Previous analytical studies show that the plastic constraint for UCC is lower than that for surface crack. Consequently, the apparent KJc for UCC is expected to be higher than that for surface crack. In this study, we performed three-point bending fracture toughness tests and finite element analyses (FEAs) for RPV steel containing a UCC or a surface crack to quantitatively investigate the effect of cladding on the plastic constraint and subsequent KJc evaluation. From the tests, we found that the apparent KJc for the UCC was considerably higher than that for the surface crack. Such a high KJc could be explained by the lower plastic constraint parameters, such as T-stress and Q-parameter, of the UCC compared with those for the surface crack. Additionally, local approach analysis showed that the KJc for the UCC was significantly higher than the master curve estimated from the fracture toughness tests using compact tension specimens.


Sign in / Sign up

Export Citation Format

Share Document