Three Dimensional Finite Element Analyses of Welding Residual Stresses of a Repaired Weld

Author(s):  
Mingya Chen ◽  
Weiwei Yu ◽  
Fei Xue ◽  
Francis Ku ◽  
Zhilin Chen ◽  
...  

The objective of this study is to correct installation non-conformance of a surge line using the excavation and re-weld method which is widely used in nuclear power plants. The surge line with a backslope was not at the required design level after initial installation. In order to solve the problem, a repairing technology is shown as follows: the weld was successively excavated and welded again while the surge line slope was corrected with the help of jacks. Because many of the degradation mechanisms relevant to power plant components can be accelerated by the presence of welding residual stresses (WRS), the WRS caused by the repairing process need to be studied. In this paper, the WRS simulation technique employed in this project is sophisticated. It utilizes a 3-D finite element (FE) model, and simulates the weld sequencing and excavation. Moreover, the WRS simulation performed in this project not only uses the un-axisymmetric model, but also considers the deformation caused by the external jacking loads. The results show that the repairing process is effective, and strain damage induced by the welding repair is also acceptable.

2017 ◽  
Vol 7 ◽  
pp. 219-223
Author(s):  
Beril Demir Karamanli ◽  
Hülya Kılıçoğlu ◽  
Armagan Fatih Karamanli

Aims The aim of this study is to evaluate the effects of the chincup appliance used in the treatment of Class III malocclusions, not only on the mandible or temporomandibular joint (TMJ) but also on all the craniofacial structures. Materials and Methods Chincup simulation was performed on a three-dimensional finite element (FE) model. 1000 g (500 g per side) force was applied in the direction of chin-condyle head. Nonlinear FE analysis was used as the numerical analysis method. Results By the application of chincup, stresses were distributed not only on TMJ or mandible but also on the circummaxillary sutures and other craniofacial structures. Conclusions Clinical changes obtained by chincup treatment in Class III malocclusions are not limited by only mandible. It was seen that also further structures were affected.


Author(s):  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Residual stress distribution in an oblique nozzle jointed to a vessel with J-groove welds was analyzed using a three-dimensional finite element method. All welding passes were considered in a 180-degree finite element (FE) model with symmetry. Temperature and stress were modeled for simultaneous bead laying. To determine residual stress distributions at the welds experimentally, a mock-up specimen was manufactured. The analytical results show good agreement with the experimental measurement data, indicating that FE modeling is valid.


2017 ◽  
Vol 21 (3) ◽  
pp. 1301-1307 ◽  
Author(s):  
Nejad Masoudi ◽  
Mahmoud Shariati ◽  
Khalil Farhangdoost

The aim of this paper is to develop means to predict accurately the residual stresses due to quenching process of an UIC60 rail. A 3-D non-linear stress analysis model has been applied to estimate stress fields of an UIC60 rail in the quenching process. A cooling mechanism with water spray is simulated applying the elastic-plastic finite element analysis for the rail. The 3-D finite element analysis results of the studies presented in this paper are needed to describe the initial conditions for analyses of how the service conditions may act to change the as-manufactured stress field.


Author(s):  
Sung Jin Yoon ◽  
Tae Jin Shin ◽  
Jae Sang Lee ◽  
Sang Moo Hwang

This paper describes in detail the deformation behavior of the rolls and strip predicted from the three-dimensional finite element analysis of skin-pass rolling. The predictions are made on the basis of the coupled analysis of elastic deformation of the rolls and elastic–plastic deformation of the strip. Predictions from the proposed finite element (FE) model are compared with experimental data from laboratory-scale cold rolling mills. Then, proposed are models for the prediction of the roll force profile and for the prediction of the residual stress profile. The prediction accuracy of the models is examined through comparison with the predictions from the FE model.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Namkeun Kim ◽  
You Chang ◽  
Stefan Stenfelt

A three-dimensional finite-element (FE) model of a human dry skull was devised for simulation of human bone-conduction (BC) hearing. Although a dry skull is a simplification of the real complex human skull, such model is valuable for understanding basic BC hearing processes. For validation of the model, the mechanical point impedance of the skull as well as the acceleration of the ipsilateral and contralateral cochlear bone was computed and compared to experimental results. Simulation results showed reasonable consistency between the mechanical point impedance and the experimental measurements when Young’s modulus for skull and polyurethane was set to be 7.3 GPa and 1 MPa with 0.01 and 0.1 loss factors at 1 kHz, respectively. Moreover, the acceleration in the medial-lateral direction showed the best correspondence with the published experimental data, whereas the acceleration in the inferior-superior direction showed the largest discrepancy. However, the results were reasonable considering that different geometries were used for the 3D FE skull and the skull used in the published experimental study. The dry skull model is a first step for understanding BC hearing mechanism in a human head and simulation results can be used to predict vibration pattern of the bone surrounding the middle and inner ear during BC stimulation.


Author(s):  
P M Cattaneo ◽  
M Dalstra ◽  
L H Frich

Three-dimensional finite element analysis is one of the best ways to assess stress and strain distributions in complex bone structures. However, accuracy in the results may be achieved only when accurate input information is given. A semi-automated method to generate a finite element (FE) model using data retrieved from computed tomography (CT) was developed. Due to its complex and irregular shape, the glenoid part of a left embalmed scapula bone was chosen as working material. CT data were retrieved using a standard clinical CT scanner (Siemens Somatom Plus 2, Siemens AG, Germany). This was done to produce a method that could later be utilized to generate a patient-specific FE model. Different methods of converting Hounsfield unit (HU) values to apparent densities and subsequently to Young's moduli were tested. All the models obtained were loaded using three-dimensional loading conditions taken from literature, corresponding to an arm abduction of 90°. Additional models with different amounts of elements were generated to verify convergence. Direct comparison between the models showed that the best method to convert HU values directly to apparent densities was to use different equations for cancellous and cortical bone. In this study, a reliable method of determining both geometrical data and bone properties from patient CT scans for the semi-automated generation of an FE model is presented.


Author(s):  
Khosrow Zarrabi ◽  
Felix Kumiadi Kwok

Tube-bends are extensively used in the boilers of power plants. Tube-bends are manufactured by bending a straight tube section. During this process, the tube cross-section becomes oval and its thickness varies around the circumference of its cross-section. This study uses three-dimensional finite element analysis to establish practical and simple equations for predicting the plastic collapse pressures and the reference stresses of the oval and variable thickness boiler-tube-bends. Such equations are pertinent to the design and integrity assessment of the boiler tube-bends.


Sign in / Sign up

Export Citation Format

Share Document