Limits of Applicability of the Notch Failure Assessment Diagram

Author(s):  
Anthony J. Horn ◽  
Chris Aird

Structural integrity assessment codes such as R6 [1] and BS7910 [2] provide guidance on the assessment of flaws that are assumed to be infinitely sharp using the Failure Assessment Diagram (FAD). In many cases, such as fatigue cracks, this assumption is appropriate, however it can be pessimistic for flaws that do not have sharp tips such as those associated with lack of fusion, porosity or mechanical damage. Several Notch Failure Assessment Diagram (NFAD) methods have been proposed in the literature to quantify the additional margins that may be present for non-sharp defects compared to the margins that would be calculated if the defect were assumed to be a sharp crack. This paper uses mechanistic modelling to define the limits of applicability of the NFAD approach in terms of ρ/a, where ρ is the notch root radius and a is the notch depth. The work concludes that the NFAD can be used to assess notches with ρ/a values of up to unity.

Author(s):  
Anthony J. Horn ◽  
Sergio Cicero ◽  
Adam Bannister ◽  
Peter J. Budden

Structural integrity assessment codes such as R6 [1] and BS7910 [2] provide guidance on the assessment of flaws that are assumed to be infinitely sharp using the Failure Assessment Diagram (FAD). In many cases, such as fatigue cracks, this assumption is appropriate, however it can be pessimistic for flaws that do not have sharp tips such as lack of fusion, porosity or mechanical damage. Several Notch Failure Assessment Diagram (NFAD) methods have been proposed in the literature to quantify the additional margins that may be present for non-sharp defects compared to the margins that would be calculated if the defect were assumed to be a sharp crack. This paper presents the first stage of on-going work to validate an NFAD method and to develop guidance for its application in safety assessments. The work uses 3D Finite Element (FE) Analysis in conjunction with a wide range of test data on non-sharp defects as a basis for validation. The paper also develops some practical guidance on the treatment of Lüders strain in the FE analysis of specimens containing notches instead of fatigue pre-cracks.


Author(s):  
Anthony J. Horn ◽  
Sergio Cicero ◽  
Adam Bannister ◽  
Peter J. Budden

Structural integrity assessment codes such as R6 [1] and BS7910 [2] provide guidance on the assessment of flaws that are assumed to be infinitely sharp using the Failure Assessment Diagram (FAD). In many cases, such as fatigue cracks, this assumption is appropriate, however it can be pessimistic for flaws that do not have sharp tips such as lack of fusion, porosity or mechanical damage. Several Notch Failure Assessment Diagram (NFAD) methods have been proposed in the literature to quantify the additional margins that may be present for non-sharp defects compared to the margins that would be calculated if the defect were assumed to be a sharp crack. This paper presents the second stage of validation work, using 3D Finite Element (FE) Analyses and a wide range of test data on non-sharp defects, to validate an NFAD method proposed for inclusion in R6 and to quantify the errors caused by various approximations in the method.


2009 ◽  
pp. 218-218-18
Author(s):  
KP Datta ◽  
WE Wood

Author(s):  
Gurumurthy Kagita ◽  
Gudimella G. S. Achary ◽  
Mahesh B. Addala ◽  
Balaji Srinivasan ◽  
Penchala S. K. Pottem ◽  
...  

Abstract Mechanical damage in subsea pipelines in the form of local dents / buckles due to excessive bending deformation may severely threaten their structural integrity. A dent / buckle has two significant effects on the pipeline integrity. Notably, residual stresses are set up as result of the plastic deformation and stress concentrations are created due to change in pipe geometry caused by the denting / buckling process. To assess the criticality of a dent / buckle, which often can be associated with strain induced flaws in the highly deformed metal, integrity assessment is required. The objective of this paper is to evaluate the severity of dent / buckle in a 48” subsea pipeline and to make the rerate, repair or replacement decision. This paper presents a Level 3 integrity assessment of a subsea pipeline dent / buckle with metal loss, reported in in-line inspection (ILI), in accordance with Fitness-For-Service Standard API 579-1/ASME FFS-1. In this paper, the deformation process that caused the damage (i.e. dent / buckle) with metal loss is numerically simulated using ILI data in order to determine the magnitude of permanent plastic strain developed and to evaluate the protection against potential failure modes. For numerical simulation, elastic-plastic finite element analyses (FEA) are performed considering the material as well as geometric non-linearity using general purpose finite element software ABAQUS/CAE 2017. Based on the numerical simulation results, the integrity assessment of dented / buckled subsea pipeline segment with metal loss has been performed to assess the fitness-for-service at the operating loads.


Author(s):  
Sergio Cicero ◽  
Virginia Madrazo ◽  
Isidro Carrascal ◽  
Miguel Laporta

This paper analyzes the notch effect and presents a methodology, based on failure assessment diagrams and the notch analysis approaches based on the theory of critical distances, for the structural integrity assessment of notched components, which allows more accurate structural analyses to be made. The methodology is applied to a set of tests performed on PMMA single edge notched bending (senb) specimens, providing better results than those obtained when the analysis is performed considering that notches behave as cracks.


Author(s):  
X. Wang ◽  
R. Bell ◽  
S. B. Lambert

The loss of crack tip constraint leads to enhanced resistance to both cleavage and ductile tearing. However, conventional failure assessment schemes (CEGB-R6, BS-7910) use lower bound toughness obtained from highly constrained test specimens. Cracks in many real engineering structures are not highly constrained, which makes failure predictions using conventional failure assessment schemes based on lower bound fracture toughness values overly pessimistic. Excessive pessimism in the structural assessment can lead to unwarranted repair or decommissioning of structures, and thus cause unneeded cost and inconvenience. Recent developments on constraint-based fracture mechanics have enabled the practical assessment of defective components including the constraint effect. For example, the recent revision of R6 and the newly developed structural integrity assessment procedures for European industry (SINTAP) have suggested a framework for failure assessments including the constraint effect. In this paper, the constraint-based failure assessment of surface cracked T-plate welded joints under tension load is presented. Different issues including the constraint-based failure assessment diagrams, the treatment of combining primary and the secondary loads, and the calculation of stress intensity factors, limit loads and constraint parameters for surface cracked T-plate joints are discussed. It is demonstrated that when the lower constraint effect is properly accounted for, the maximum allowable tensile stress level increases substantially.


Sign in / Sign up

Export Citation Format

Share Document