Finite Element Analysis of Printed Circuit Heat Exchanger Core for Creep and Creep-Fatigue Responses

Author(s):  
Heramb P. Mahajan ◽  
Tasnim Hassan

Abstract Printed circuit heat exchangers (PCHEs) have a high heat transfer coefficient which makes them a suitable option for very high temperature reactors (VHTRs). ASME Section VIII design code provide PCHE design rules for non-nuclear applications. The PCHE design methodology for nuclear applications is yet to be established. Towards developing the ASME Section III code rules, this study started with the PCHE design as per section VIII. An experimental set up is developed to evaluate the designed PCHE for creep and creep-fatigue performances. This study performed pretest finite element analysis to estimate experimental responses and failure loads for setting up the experiments. Three dimensional isothermal analyses of the PCHE’s were conducted by using an advanced unified constitutive model to simulate the creep-fatigue interaction. The sub-modeling technique was used to analyze the channel scale response of the PCHE. Analysis results indicate that the failure may be governed by the channel corner responses, which is influenced by the creep-fatigue interaction. Analysis based creep-fatigue damage curve is plotted as per ASME code to evaluate the design of PCHEs for nuclear application.

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Hyeong-Yeon Lee ◽  
Kee-Nam Song ◽  
Yong-Wan Kim ◽  
Sung-Deok Hong ◽  
Hong-Yune Park

A process heat exchanger (PHE) transfers the heat generated from a nuclear reactor to a sulfur-iodine hydrogen production system in the Nuclear Hydrogen Development and Demonstration, and was subjected to very high temperature up to 950°C. An evaluation of creep-fatigue damage, for a prototype PHE, has been carried out from finite element analysis with the full three dimensional model of the PHE. The inlet temperature in the primary side of the PHE was 950°C with an internal pressure of 7 MPa, while the inlet temperature in the secondary side of the PHE is 500°C with internal pressure of 4 MPa. The candidate materials of the PHE were Alloy 617 and Hastelloy X. In this study, only the Alloy 617 was considered because the high temperature design code is available only for Alloy 617. Using the full 3D finite element analysis on the PHE model, creep-fatigue damage evaluation at very high temperature was carried out, according to the ASME Draft Code Case for Alloy 617, and technical issues in the Draft Code Case were raised.


Author(s):  
Nazrul Islam ◽  
Tasnim Hassan

Abstract This study evaluates creep-fatigue damage in the modified Grade 91 thick-cylinder tested by Japan Atomic Energy Agency (JAEA), to understand the failure mechanism of critical components of Fast Reactor nuclear plants. As modified Grade 91 demonstrated creep-fatigue interaction induced failure mechanisms, finite element analysis of high-temperature components will require a unified constitutive model (UCM) that can simulate various creep-fatigue responses with reasonable accuracy. Hence, a UCM coupled with various advanced modeling features including the continuum damage modeling features is investigated to demonstrate their predictability of the fatigue, creep and creep-fatigue responses of the modified Grade 91 steel. The modified UCM is implemented into ABAQUS for analysis of creep deformation in the thick cylinder benchmark problem. Finite element analysis results are presented to demonstrate how the thermal cycling influences the creep-deformation of this high-temperature component. It is also demonstrated how thermal cycling’s influence on fatigue life can be determined based on the damage variable incorporated in the UCM.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Dianyin Hu ◽  
Rongqiao Wang ◽  
Guicang Hou

A new lifetime criterion for withdrawal of turbine components from service is developed in this paper based on finite element (FE) analysis and experimental results. Finite element analysis is used to determine stresses in the turbine component during the imposed cyclic loads and analytically predict a fatigue life. Based on the finite element analysis, the critical section is then subjected to a creep-fatigue test, using three groups of full scale turbine components, attached to an actual turbine disc conducted at 750 °C. The experimental data and life prediction results were in good agreement. The creep-fatigue life of this type of turbine component at a 99.87% survival rate is 30 h.


2014 ◽  
Vol 598 ◽  
pp. 194-197
Author(s):  
Hong Jun Li ◽  
Qiang Ding ◽  
Xun Huang

Stress linearization is used to define constant and linear through-thickness FEA (Finite Element Analysis) stress distributions that are used in place of membrane and membrane plus bending stress distributions in pressure vessel Design by Analysis. In this paper, stress linearization procedures are reviewed with reference to the ASME Boiler & Pressure Vessel Code Section VIII Division 2 and EN13445. The basis of the linearization procedure is stated and a new method of stress linearization considering selected stress tensors for linearization is proposed.


Author(s):  
Donald J. Florizone

Traditional design techniques result in excess material being required for ellipsoidal heads. The 2001 ASME Boiler and Pressure Vessel Code Section VIII Division 1, UG-32D and Section VIII Division 2, AD-204 limit the minimum design thickness of the heads. ASME Boiler and Pressure Vessel Code Case 2261 provides alternate equations that enable thinner head design thickness. VIII-2 Appendix 3 and 4 methods potentially could be used to further optimize the head thickness. All the equations in the code use one thickness for the entire head. On large diameter thin heads the center or spherical area is often thicker than the knuckle area due to the method of manufacture. Including this extra material in the design calculations results in an increase of the MAWP of large diameter thin heads. VIII-2, AD-200 of the code permits localized thinning in a circumferential band in a cylindrical shell. Applying these same rules to elliptical heads would permit thinning in the knuckle region as well. Engineers have powerful finite element analysis tools that can be used to accurately determine levels of plastic strain and plastic deformed shapes. It is proposed that VIII-2 Appendix 4 and 5 methods be permitted for the design of elliptical heads. Doing so would permit significant decreases in thickness requirements. Different methods of Plastic Finite Element Analysis (PFEA) are investigated. An analysis of a PVRC sponsored burst test is done to develop and verify the PFEA methods. Two designs based on measurements of actual vessels are analyzed to determine the maximum allowable working pressures (MAWP) for thick and thin heads with and without local thin regions. MAWP is determined by limit analysis, per VIII-2 4-136.3 and by two other proposed methods. Using Burst FEA, the calculated burst pressure is multiplied by a safety factor to obtain MAWP. Large deflection large strain elastic perfectly plastic limit analyses (LDLS EPP LL) method includes the beneficial effect of deformations when determining the maximum limit pressure. Elliptical heads become more spherical during deformation. The spherical shape has higher pressure restraining capabilities. An alternate design equation for elliptical heads based on the LDLS EPP LL calculations is also proposed.


Author(s):  
Avinash Shaw ◽  
Heramb Mahajan ◽  
Tasnim Hassan

Abstract Printed Circuit Heat Exchangers (PCHEs) have high thermal efficiency because of the numerous minuscule channels. These minuscule channels result in a high thermal exchange area per unit volume, making PCHE a top contender for an intermediate heat exchanger in high-temperature reactors. Thousands of minuscule channels make finite element analysis of the PCHE computationally infeasible. A two-dimensional analysis is usually performed for the PCHE core, which cannot simulate the local channel level responses reasonably because of the absence of global constraint influence. At present, there is no analysis technique available in the ASME Code or literature that is computationally efficient and suitable for engineers to estimate PCHE local responses. A novel but practical two-step analysis framework is proposed for performing PCHE analysis. In the first step, the channeled core is replaced by orthotropic solids with similar stiffness to simulate the global thermomechanical elastic responses of the PCHE. In the second step, local submodel analysis with detailed channel geometry and loading is performed using the elastic-perfectly plastic material model. The proposed two-step analysis technique provides a unique capability to estimate the channel corner responses to be used for PCHE performance assessment. This study first developed a methodology for calculating the elastic orthotropic properties of the PCHE core. Next, the two-step analysis is performed for a realistic size PCHE core, and different issues observed in the results are scrutinized and resolved. Finally, a practical finite element analysis framework for PCHEs in high-temperature nuclear service is recommended.


Sign in / Sign up

Export Citation Format

Share Document