Inspection Case Analysis of Natural Gas Manifold in a High Acid Gas Field

Author(s):  
Jielu Wang ◽  
Wenming Song ◽  
Xiaoying Tang ◽  
Ju Ding ◽  
Zhe Pu

Abstract Natural gas manifold is one of the key production facilities in gas field. It is used to buffer, collect and distribute natural gas in natural gas station. In the gas gathering terminal station of a high acid gas field, one of the manifolds had cracks and leakage on the surface of longitudinal welds when it ran for less than 100 hours. Several tests had been carried out of the failure weld seam. Test results analyses and theoretical analysis show that the cracking may cause by weld defects and propagated rapidly based on the mechanism of hydrogen blisters and HIC. In order to verify the conclusion of the analyses and ensure the safe operation of the gas field, an overall inspection of all the natural gas manifolds in the gas field had been carried out. The inspection results proved that there were manufacturing defects in the weld of all the manifolds in this gas field. The natural gas manifold has great influence on the safe operation of natural gas field. The poor working condition of the manifold may lead to failure and even endanger the safety of production. The case analysis in this paper provides a reference for the manifold inspection and ensures the safe operation of the gas field.

2021 ◽  
Author(s):  
Jielu Wang ◽  
Wenming Song ◽  
Xiaoying Tang ◽  
Ju Ding ◽  
Zhe Pu

2021 ◽  
Author(s):  
Jielu Wang ◽  
Wenming Song ◽  
Xiaoying Tang ◽  
Ju Ding ◽  
Zhe Pu

ACS Omega ◽  
2021 ◽  
Author(s):  
Nasrin Salimi Darani ◽  
Reza Mosayebi Behbahani ◽  
Yasaman Shahebrahimi ◽  
Afshin Asadi ◽  
Amir H. Mohammadi

Author(s):  
F. L. Eisinger ◽  
R. E. Sullivan

The tubular heat exchangers described exhibited a sensitivity to flow-induced tube vibration at about 50% of their design shell-side flow. Following a detailed theoretical analysis, the heat exchangers were modified by the helical spacer method providing additional tube supports in-between the existing support plates and in the U-bend. This modification aimed at allowing the heat exchangers to operate safely and reliably at full load, including a 25% overload. Post modification sound and vibration testing was performed which confirmed the adequacy of the modification. The test results showed however, that at the overload condition, an unusual acoustic wave inside the shell was developing. It was determined that this wave would not be harmful to the safe operation of the heat exchangers. The paper will discuss the findings in more detail.


Author(s):  
Edson Batista da Silva ◽  
Marcelo Assato ◽  
Rosiane Cristina de Lima

Usually, the turbogenerators are designed to fire a specific fuel, depending on the project of these engines may be allowed the operation with other kinds of fuel compositions. However, it is necessary a careful evaluation of the operational behavior and performance of them due to conversion, for example, from natural gas to different low heating value fuels. Thus, this work describes strategies used to simulate the performance of a single shaft industrial gas turbine designed to operate with natural gas when firing low heating value fuel, such as biomass fuel from gasification process or blast furnace gas (BFG). Air bled from the compressor and variable compressor geometry have been used as key strategies by this paper. Off-design performance simulations at a variety of ambient temperature conditions are described. It was observed the necessity for recovering the surge margin; both techniques showed good solutions to achieve the same level of safe operation in relation to the original engine. Finally, a flammability limit analysis in terms of the equivalence ratio was done. This analysis has the objective of verifying if the combustor will operate using the low heating value fuel. For the most engine operation cases investigated, the values were inside from minimum and maximum equivalence ratio range.


2012 ◽  
Vol 271-272 ◽  
pp. 1328-1345
Author(s):  
Jin Li ◽  
Jian Yang Zhao

In combination with the author's experiences in design for integrated unit for natural gas field gathering and transmission, this paper describes conventional practices and technical characteristics of integrated unit in the processes of standardization design and modularization establishment and analyzes the initial application of pneumatic control ball valve, wedge-shaped flowmeter and other new technologies for surface facilities in the gas field. As a result, a new design idea is proposed in this paper, i.e., to improve the integration level of surface facilities, to minimize power consumption and maintenance works and to realize unattended work mode.


2016 ◽  
Vol 35 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Wenxue Han ◽  
Shizhen Tao ◽  
Guoyi Hu ◽  
Weijiao Ma ◽  
Dan Liu ◽  
...  

Light hydrocarbon has abundant geochemical information, but there are few studies on it in Shenmu gas field. Taking Upper Paleozoic in Shenmu gas field as an example, authors use gas chromatography technology to study light hydrocarbon systematically. The results show that (1) The Shenmu gas field is mainly coal-derived gas, which is mixed by partial oil-derived gas due to the experiment data. (2) Based on K1, K2 parameter and Halpern star chart, the Upper Paleozoic gas in Shenmu gas field belongs to the same petroleum system and the depositional environment of natural gas source rocks should be homologous. (3) The source rocks are mainly from terrestrial higher plant origins and belong to swamp facies humic due to methyl cyclohexane index and Mango parameter intersection chart, which excluded the possibility of the Upper Paleozoic limestone as source rocks. (4) The isoheptane ranges from 1.45 to 2.69 with an average of 2.32, and n-heptane ranges from 9.48 to 17.68% with an average of 11.71%, which is below 20%. The maturity of Upper Paleozoic gas in Shenmu gas field is low-normal stage, which is consistent with Ro data. (5) The Upper Paleozoic natural gas in the Shenmu gas field did not experience prolonged migration or secondary changes, thus can be analyzed by light hydrocarbon index precisely.


Sign in / Sign up

Export Citation Format

Share Document