Stress Analysis of Carotid Arterial Stenosis With 3-D Fluid-Structure Interaction Simulations

Author(s):  
Giulia Fabbri ◽  
Quan Long ◽  
Hao Gao ◽  
Carola Koenig ◽  
Michael W. Collins ◽  
...  

Atherosclerotic plaques may rupture without warning and cause subsequential acute syndromes such as myocardial infarction and cerebral stroke. Plaque disruption tends to occur at points where the plaque surface is weakest i.e. at points where biomechanical stresses caused by the pulsatile blood flow are concentrated. Therefore, both plaque vulnerability (intrinsic disease) and rupture triggers (extrinsic forces) are important for plaque disruption [1]. The former predisposes the plaque to rupture while the latter may precipitate it.

2015 ◽  
Vol 105 ◽  
pp. 877-884 ◽  
Author(s):  
Khairuzzaman Mamun ◽  
Most. Nasrin Akhter ◽  
Md. Shirazul Hoque Mollah ◽  
Md. Abu Naim Sheikh ◽  
Mohammad Ali

Author(s):  
Amirhosein Manzoori ◽  
Famida Fallah ◽  
Mohammadali Sharzehee ◽  
Sina Ebrahimi

Stenosis can disrupt the normal pattern of blood flow and make the artery more susceptible to buckling which may cause arterial tortuosity. Although the stability simulations of the atherosclerotic arteries were conducted based on solid modeling and static internal pressure, the mechanical stability of stenotic artery under pulsatile blood flow remains unclear while pulsatile nature of blood flow makes the artery more critical for stresses and stability. In this study, the effect of stenosis on arterial stability under pulsatile blood flow was investigated. Fluid–structure interaction (FSI) simulations of artery stenosis under pulsatile flow were conducted. 3D idealized geometries of carotid artery stenosis with symmetric and asymmetric plaques along with different percentages of stenosis were created. It was observed that the stenosis percentage, symmetry/asymmetry of the plaque, and the stretch ratio can dramatically affect the buckling pressure. Buckling makes the plaques (especially in asymmetric ones) more likely to rupture due to increasing the stresses on it. The dominant stresses on plaques are the circumferential, axial and radial ones, respectively. Also, the highest shear stresses on the plaques were detected in [Formula: see text] and [Formula: see text] planes for the symmetric and asymmetric stenotic arteries, respectively. In addition, the maximum circumferential stress on the plaques was observed in the outer point of the buckled configuration for symmetric and asymmetric stenosis as well as at the ends of the asymmetric plaque. Furthermore, the artery buckling causes a large vortex flow at the downstream of the plaque. As a result, the conditions for the penetration of lipid particles and the formation of new plaques are provided.


Author(s):  
Lorenzo Bennati ◽  
Christian Vergara ◽  
Maurizio Domanin ◽  
Chiara Malloggi ◽  
Daniele Bissacco ◽  
...  

Abstract Atherosclerosis is a systemic disease that leads to accumulation of deposits, known as atherosclerotic plaques, within the walls of the carotids. In particular, three types of plaque can be distinguished: soft, fibrous and calcific. Most of the computational studies who investigated the interplay between the plaque and the blood flow on patient-specific geometries, used non standard medical images to directly delineate and segment the plaque and its components. However these techniques are not so widely available in the clinical practice. In this context the aim of our work was twofold: i) to propose a new geometric tool that allowed to reconstruct a plausible plaque in the carotids from standard images and ii) to perform 3D FSI simulations where we compared some fluid-dynamic and structural quantities among 15 patients characterized by different typologies of plaque. Our results highlighted that both the morphology and the mechanical properties of different plaque components play a crucial role in determining the vulnerability of the plaque.


Sign in / Sign up

Export Citation Format

Share Document