Grand Challenge Competition: A Parametric Numerical Model to Predict In Vivo Medial and Lateral Knee Forces in Walking Gaits

Author(s):  
Christopher B. Knowlton ◽  
Markus A. Wimmer ◽  
Hannah J. Lundberg

Numerical models are necessary to estimate forces through the knee joint during activities of daily living. However, the numerous muscles and soft tissues crossing the knee joint result in a computationally indeterminate problem. The recent availability of measured contact force data from telemeterized total knee replacements (TKRs) has given researchers the chance to validate models, but telemeterized TKRs represent only a few patients with a specific implant type. Computational models remain necessary to bridge the gap between the small instrumented patient population with a particular implant and larger patient populations executing various activities. Abstracted gait data from another lab tests the versatility of any model to accurately predict forces of TKR patients performing a variety of gaits with disparate implant types. In this study, we calculate and examine the differences between medial and lateral contact forces in level walking and medial thrust gait trials from a freely provided dataset1.

Author(s):  
Hannah J. Lundberg ◽  
Markus A. Wimmer

Detailed knowledge of in vivo knee contact forces and the contribution from muscles, ligaments, and other soft-tissues to knee joint function are essential for evaluating total knee replacement (TKR) designs. We have recently developed a mathematical model for calculating knee joint contact forces using parametric methodology (Lundberg et al., 2009). The numerical model calculates a “solution space” of three-dimensional contact forces for both the medial and lateral compartments of the tibial plateau. The solution spaces are physiologically meaningful, and represent the result of balancing the external moments and forces by different strategies.


Author(s):  
Kartik M. Varadarajan ◽  
Angela Moynihan ◽  
Darryl D’Lima ◽  
Clifford W. Colwell ◽  
Harry E. Rubash ◽  
...  

Accurate knowledge of in vivo articular contact kinematics and contact forces is required to quantitatively understand factors limiting life of total knee arthroplasty (TKA) implants, such as polyethylene component wear and implant loosening [1]. Determination of in vivo tibiofemoral contact forces has been a challenging issue in biomechanics. Historically, instrumented tibial implants have been used to measure tibiofemoral forces in vitro [2] and computational models involving inverse dynamic optimization have been used to estimate joint forces in vivo [3]. Recently, D’Lima et al. reported the first in vivo measurement of 6DOF tibiofemoral forces via an instrumented implant in a TKA patient [4]. However this technique does not provide a direct estimation of tibiofemoral contact forces in the medial and lateral compartments. Recently, a dual fluoroscopic imaging system has been used to accurately determine tibiofemoral contact locations on the medial and lateral tibial polyethylene surfaces [5]. The objective of this study was to combine the dual fluoroscope technique and the instrumented TKAs to determine the dynamic 3D articular contact kinematics and contact forces on the medial and lateral tibial polyethylene surfaces during functional activities.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Florent Moissenet ◽  
Laurence Chèze ◽  
Raphaël Dumas

While recent literature has clearly demonstrated that an extensive personalization of the musculoskeletal models was necessary to reach high accuracy, several components of the generic models may be further investigated before defining subject-specific parameters. Among others, the choice in muscular geometry and thus the level of muscular redundancy in the model may have a noticeable influence on the predicted musculotendon and joint contact forces. In this context, the aim of this study was to investigate if the level of muscular redundancy can contribute or not to reduce inaccuracies in tibiofemoral contact forces predictions. For that, the dataset disseminated through the Sixth Grand Challenge Competition to Predict In Vivo Knee Loads was applied to a versatile 3D lower limb musculoskeletal model in which two muscular geometries (i.e., two different levels of muscular redundancy) were implemented. This dataset provides tibiofemoral implant measurements for both medial and lateral compartments and thus allows evaluation of the validity of the model predictions. The results suggest that an increase of the level of muscular redundancy corresponds to a better accuracy of total tibiofemoral contact force whatever the gait pattern investigated. However, the medial and lateral contact forces ratio and accuracy were not necessarily improved when increasing the level of muscular redundancy and may thus be attributed to other parameters such as the location of contact points. To conclude, the muscular geometry, among other components of the generic model, has a noticeable impact on joint contact forces predictions and may thus be correctly chosen even before trying to personalize the model.


Author(s):  
Mohammad Kia ◽  
Trent M. Guess ◽  
Antonis P. Stylianou

Detailed knowledge of joint kinematics and loading is essential for improving the design and surgical outcomes of total knee replacements as well as tissue engineering applications. Dynamic loading is a contributing factor in the development of joint osteoarthritis and in total knee replacement wear. Dynamic computational models in which muscle, ligament, and joint loads are predicted concurrently would be ideal clinical tools for surgery planning and for implant design. An important obstacle in clinical applications of computational models is validation of the estimated in-vivo loads.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Kurt Manal ◽  
Thomas S. Buchanan

Computational models that predict internal joint forces have the potential to enhance our understanding of normal and pathological movement. Validation studies of modeling results are necessary if such models are to be adopted by clinicians to complement patient treatment and rehabilitation. The purposes of this paper are: (1) to describe an electromyogram (EMG)-driven modeling approach to predict knee joint contact forces, and (2) to evaluate the accuracy of model predictions for two distinctly different gait patterns (normal walking and medial thrust gait) against known values for a patient with a force recording knee prosthesis. Blinded model predictions and revised model estimates for knee joint contact forces are reported for our entry in the 2012 Grand Challenge to predict in vivo knee loads. The EMG-driven model correctly predicted that medial compartment contact force for the medial thrust gait increased despite the decrease in knee adduction moment. Model accuracy was high: the difference in peak loading was less than 0.01 bodyweight (BW) with an R2 = 0.92. The model also predicted lateral loading for the normal walking trial with good accuracy exhibiting a peak loading difference of 0.04 BW and an R2 = 0.44. Overall, the EMG-driven model captured the general shape and timing of the contact force profiles and with accurate input data the model estimated joint contact forces with sufficient accuracy to enhance the interpretation of joint loading beyond what is possible from data obtained from standard motion capture studies.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Marco A. Marra ◽  
Valentine Vanheule ◽  
René Fluit ◽  
Bart H. F. J. M. Koopman ◽  
John Rasmussen ◽  
...  

Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into clinical practice. We present a methodology to develop subject-specific models able to simultaneously predict muscle, ligament, and knee joint contact forces along with secondary knee kinematics. The MS architecture of a generic cadaver-based model was scaled using an advanced morphing technique to the subject-specific morphology of a patient implanted with an instrumented total knee arthroplasty (TKA) available in the fifth “grand challenge competition to predict in vivo knee loads” dataset. We implemented two separate knee models, one employing traditional hinge constraints, which was solved using an inverse dynamics technique, and another one using an 11-degree-of-freedom (DOF) representation of the tibiofemoral (TF) and patellofemoral (PF) joints, which was solved using a combined inverse dynamic and quasi-static analysis, called force-dependent kinematics (FDK). TF joint forces for one gait and one right-turn trial and secondary knee kinematics for one unloaded leg-swing trial were predicted and evaluated using experimental data available in the grand challenge dataset. Total compressive TF contact forces were predicted by both hinge and FDK knee models with a root-mean-square error (RMSE) and a coefficient of determination (R2) smaller than 0.3 body weight (BW) and equal to 0.9 in the gait trial simulation and smaller than 0.4 BW and larger than 0.8 in the right-turn trial simulation, respectively. Total, medial, and lateral TF joint contact force predictions were highly similar, regardless of the type of knee model used. Medial (respectively lateral) TF forces were over- (respectively, under-) predicted with a magnitude error of M < 0.2 (respectively > −0.4) in the gait trial, and under- (respectively, over-) predicted with a magnitude error of M > −0.4 (respectively < 0.3) in the right-turn trial. Secondary knee kinematics from the unloaded leg-swing trial were overall better approximated using the FDK model (average Sprague and Geers' combined error C = 0.06) than when using a hinged knee model (C = 0.34). The proposed modeling approach allows detailed subject-specific scaling and personalization and does not contain any nonphysiological parameters. This modeling framework has potential applications in aiding the clinical decision-making in orthopedics procedures and as a tool for virtual implant design.


Author(s):  
Antonis P. Stylianou ◽  
Mohammad Kia ◽  
Trent M. Guess

Detailed analysis of knee joint loading during ambulatory activities is of utmost importance for improving the design of total knee replacement components and the outcome of the surgical procedures. A dynamic computational model capable of concurrent predictions of muscle, ligament, and articular surface contact forces would be the ideal tool for enhancing our knowledge of these in-vivo loads and for exploring different loading scenarios.


Author(s):  
Andrew J. Meyer ◽  
Darryl D. D’Lima ◽  
Scott A. Banks ◽  
James Coburn ◽  
Melinda Harman ◽  
...  

The ability to predict medial and lateral contact forces accurately in the knee could be useful for research on neuromuscular coordination, the development of treatments for knee osteoarthritis, and the design of knee replacements with improved durability and functionality. To improve their ability to predict medial and lateral contact forces, researchers have recently developed knee implants capable of measuring four [1] or six [2] in vivo loads applied to the tibia. These implants provide data that is useful for validating in vivo knee load predictions from computational models. A difficulty in using these experimental measurements is translating them into clinically significant measurements, i.e. medial and lateral contact force. A simple and quick method for finding these contact forces from the experimental implant data would be ideal.


Author(s):  
S. C. E. Brandon ◽  
D. G. Thelen ◽  
K. J. Deluzio

Accurate prediction of knee joint contact loading during gait is important for understanding knee pathology and development of suitable clinical interventions. While many researchers have modeled the knee contact loads during level walking, these predictions have ranged from 3.4 [1] to 7 [2] times body weight. Validation of contact loads is difficult; the joint contact load depends not only on readily obtainable external kinematics and reaction forces, but also on the forces generated by muscle and other soft tissues. Recently, an instrumented tibial implant, capable of telemetrically reporting the six degree-of-freedom loading environment of the tibial plateau, was used to tune and validate an EMG-driven model of the lower extremity [3]. Recognizing the value of these in vivo data, and the limitations of existing knee models, these researchers devised the Grand Challenge Competitions to Predict In Vivo Knee Loads.


Author(s):  
Andrew J. Meyer ◽  
Darryl D. D’Lima ◽  
Scott A. Banks ◽  
James Coburn ◽  
Melinda Harman ◽  
...  

Accurate prediction of contact forces in the knee could be useful for the study of neuromusculoar coordination, the development of treatments for knee osteoarthritis, and the design of knee replacements with improved functionality or durabilty. To assist in these endeavors, researchers have recently designed and constructed novel knee implants capable of measuring four [1] or six [2] loads in vivo. These measurements provide valuable data for evaluating in vivo knee load predictions generated via computational models. One of the challenges of using these experimental data is converting the measured loads into medial and lateral contact forces — quantities that have clinical significance. Furthermore, it would be valuable if in vivo load measurements could be converted into accurate tibiofemoral pose estimates so that knee kinematics could be inferred from these unique load measurements as well.


Sign in / Sign up

Export Citation Format

Share Document