High-Risk Tissue Distribution in the Human Proximal Femur Under Sideways Fall Loading

Author(s):  
Shashank Nawathe ◽  
Alissa Romens ◽  
Mary L. Bouxsein ◽  
Tony M. Keaveny

Despite the central role of femoral strength in the etiology of osteoporotic hip fractures [1], the associated micromechanical basis of femoral strength remains poorly understood. Cadaver studies [2] using biomechanical testing have established that both the cortical and trabecular bone contribute to the structural integrity of the proximal femur but these studies did not address mechanisms. Addressing mechanisms, theoretical and finite element continuum analyses have assessed cortical-trabecular load sharing and have described stress and strain distributions throughout the proximal femur [1,3]. However, the regions of the bone at highest risk of initial failure remain unclear, in part because the continuum nature and low spatial resolution of these previous analyses render them incapbable of capturing load transfer associated with the microstructure of the trabecular bone and the sometimes thin cortex. Overcoming this limitation, micro-CT-based finite element analysis has recently been applied to the entire proximal femur [4], but so far only two femurs have been analyzed and thus reported trends are difficult to generalize. To extend this recent work and provide further insight into the microstructural basis of femoral strength, we applied micro-CT based finite element analysis to investigate femoral micro-mechanics in a cohort of elderly human proximal femurs.

2006 ◽  
Vol 321-323 ◽  
pp. 278-281
Author(s):  
Wen Quan Cui ◽  
Ye Yeon Won ◽  
Myong Hyun Baek ◽  
Kwang Kyun Kim

The purpose of this study was to investigate the contribution of the microstructural properties of trabecular bone in predicting its elastic modulus in the intertrochanteric region. A total of 15 trabecular bone core specimens were obtained from the proximal femurs of patients undergoing total hip arthroplasty. The micro-computed tomography (micro-CT) was used to scan each specimen to obtain micro-morphology. Microstructural parameters were directly calculated using software. Micro-CT images were converted to micro-finite element model using meshing technique, and then micro-finite element analysis (FEA) was performed to assess the mechanical property (Young’s modulus) of trabecular bone. The results showed that the ability to explain this variance of Young’s modulus is improved by combining the structural indices with each other. It suggested that assessment of bone microarchitecture should be added as regards detection of osteoporosis and evaluation of the efficacy of drug treatments for osteoporosis.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


Author(s):  
Kangning Su ◽  
Yuxiao Zhou ◽  
Mehran Hossaini-Zadeh ◽  
Jing Du

2016 ◽  
Vol 61 (2) ◽  
pp. 843-846 ◽  
Author(s):  
J. Żmudzki ◽  
P. Malara ◽  
G. Chladek

Abstract Implant and a tooth supported dentures are avoided by dentists because of uneven distribution of occlusal loads between a stiffer implant and a more pliable tooth. The hypothesis was that a 3-point all-ceramic bridge supported on a natural second premolar tooth and a two-pieces typical implant bears safely mastication loads. The finite element analysis showed that the implant splinted by all-ceramic zirconium bridge with the second premolar was safe under lateral mastication load, but there was found an overload at wide zone of bone tissue around the implant under the load of 800 N. The patients can safely masticate, but comminution of hard food should be avoided and they should be instructed that after such an indiscretion they need to contact a dental professional, because, in spite of integrity of the prosthesis, the bone tissue around the implant may fail and there is a hazard of intrusion of the tooth.


2021 ◽  
Vol 335 ◽  
pp. 03011
Author(s):  
Mohammed Shariff Mohamed Sulaiman ◽  
Seong Chun Koay ◽  
Ming Yeng Chan ◽  
Hui Leng Choo ◽  
Ming Meng Pang ◽  
...  

This research investigated the lattice structure fabricated using corn husk fibre reinforced recycled polystyrene composite using Finite Element Analysis (FEA). The material’s properties of this composite material were obtained from previous study. Then, the lattice structure of lattice structure was created using Creo® software and the FEA simulation was done by ANSYS software. In this study, the lattice structures were created using triangular prism and hexagonal prism. The analysis was divided into two conditions: 1) lattice structure with different prism shape and similar surface area, 2) lattice structure with varies of strut thickness and 3) lattice structure with different prism shape and similar lattice parameter. The results show the lattice structure with triangular prism have more structural integrity than hexagonal prism. Then, lattice structure with triangular prism can be built with lesser material but stronger and stiffer than lattice structure with hexagonal prism.


Sign in / Sign up

Export Citation Format

Share Document