Lamellar and Interlamellar Shear Compared Across Regions of the Annulus Fibrosus

Author(s):  
K. M. Labus ◽  
A. H. Hsieh ◽  
C. M. Puttlitz

Computational models of the intervertebral disc commonly use continuum descriptions that treat the annulus fibrosus as a single material rather than discretely modeling the lamellae and interlamellar interactions [1,2]. However, modeling the mechanics of individual lamellae and the interlamellar region can aid in the understanding of degenerative disc disease and its treatment. Previous work has demonstrated that fibrous connections between lamellae as well as bridges spanning across layers exist, but the mechanical contributions of these structures have largely remained uncharacterized [3]. Studying interlamellar shear mechanics may provide insights into the structure-function relationships of the annulus. The purpose of this study was to compare the mechanical shear in the interlamellar and lamellar regions, model the stress-stretch relationships of these areas utilizing a hyperelastic strain energy function, and compare the shear properties across multiple locations of the intervertebral disc.

1977 ◽  
Vol 99 (2) ◽  
pp. 98-103
Author(s):  
Han-Chin Wu ◽  
R. Reiss

The stress response of soft biological tissues is investigated theoretically. The treatment follows the approach of Wu and Yao [1] and is now extended for a broad class of soft tissues. The theory accounts for the anisotropy due to the presence of fibers and also allows for the stretching of fibers under load. As an application of the theory, a precise form for the strain energy function is proposed. This form is then shown to describe the mechanical behavior of annulus fibrosus satisfactorily. The constants in the strain energy function have also been approximately determined from only a uniaxial tension test.


Author(s):  
Jose J. García ◽  
Christian Puttlitz

Models to represent the mechanical behavior of the annulus fibrosus are important tools to understand the biomechanics of the spine. Many hyperelastic constitutive equations have been proposed to simulate the mechanical behavior of the annulus that incorporate the anisotropic nature of the tissue. Recent approaches [1,2] have included terms into the energy function which take into account fiber-fiber and fiber-matrix interactions, leading to complex functions that cannot be readily implemented into commercial finite element codes for an efficient simulation of nonlinear realistic models of the spine (which are generally composed of 100,000+ degrees of freedom). An effort is undertaken here to test the capability of a relatively simple strain energy function [3] for the description of the annulus fibrosus. This function has already been shown to successfully represent the mechanical behavior of the arterial tissue and can be readily implemented into existing finite element codes.


2005 ◽  
Vol 73 (5) ◽  
pp. 815-824 ◽  
Author(s):  
X. Q. Peng ◽  
Z. Y. Guo ◽  
B. Moran

Based on fiber reinforced continuum mechanics theory, an anisotropic hyperelastic constitutive model for the human annulus fibrosus is developed. A strain energy function representing the anisotropic elastic material behavior of the annulus fibrosus is additively decomposed into three parts nominally representing the energy contributions from the matrix, fiber and fiber-matrix shear interaction, respectively. Taking advantage of the laminated structure of the annulus fibrosus with one family of aligned fibers in each lamella, interlamellar fiber-fiber interaction is eliminated, which greatly simplifies the constitutive model. A simple geometric description for the shearing between the fiber and the matrix is developed and this quantity is used in the representation of the fiber-matrix shear interaction energy. Intralamellar fiber-fiber interaction is also encompassed by this interaction term. Experimental data from the literature are used to obtain the material parameters in the constitutive model and to provide model validation. Determination of the material parameters is greatly facilitated by the partition of the strain energy function into matrix, fiber and fiber-matrix shear interaction terms. A straightforward procedure for computation of the material parameters from simple experimental tests is proposed.


1999 ◽  
Author(s):  
Elisa C. Bass ◽  
Jeffrey C. Lotz

Abstract The mechanical behavior of the annulus fibrosus has typically been characterized through the use of uniaxial tests. In contrast, its in vivo constraints are multiaxial and likely result in a mechanical response very different from that observed to date in vitro. The goal of this study was to test the annulus in biaxial tension and use these data to determine an elastic strain energy function for the annulus. Our results demonstrate that the mechanical response of the annulus is dramatically influenced by a biaxial constraint, and that these experiments provide important data for the determination of the constitutive formulation for this strongly anisotropic and nonlinear tissue.


Author(s):  
David J. Steigmann

This chapter covers the notion of hyperelasticity—the concept that stress is derived from a strain—energy function–by invoking an analogy between elastic materials and springs. Alternatively, it can be derived by invoking a work inequality; the notion that work is required to effect a cyclic motion of the material.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


2021 ◽  
pp. 002199832110115
Author(s):  
Shaikbepari Mohmmed Khajamoinuddin ◽  
Aritra Chatterjee ◽  
MR Bhat ◽  
Dineshkumar Harursampath ◽  
Namrata Gundiah

We characterize the material properties of a woven, multi-layered, hyperelastic composite that is useful as an envelope material for high-altitude stratospheric airships and in the design of other large structures. The composite was fabricated by sandwiching a polyaramid Nomex® core, with good tensile strength, between polyimide Kapton® films with high dielectric constant, and cured with epoxy using a vacuum bagging technique. Uniaxial mechanical tests were used to stretch the individual materials and the composite to failure in the longitudinal and transverse directions respectively. The experimental data for Kapton® were fit to a five-parameter Yeoh form of nonlinear, hyperelastic and isotropic constitutive model. Image analysis of the Nomex® sheets, obtained using scanning electron microscopy, demonstrate two families of symmetrically oriented fibers at 69.3°± 7.4° and 129°± 5.3°. Stress-strain results for Nomex® were fit to a nonlinear and orthotropic Holzapfel-Gasser-Ogden (HGO) hyperelastic model with two fiber families. We used a linear decomposition of the strain energy function for the composite, based on the individual strain energy functions for Kapton® and Nomex®, obtained using experimental results. A rule of mixtures approach, using volume fractions of individual constituents present in the composite during specimen fabrication, was used to formulate the strain energy function for the composite. Model results for the composite were in good agreement with experimental stress-strain data. Constitutive properties for woven composite materials, combining nonlinear elastic properties within a composite materials framework, are required in the design of laminated pretensioned structures for civil engineering and in aerospace applications.


Author(s):  
Arne Vogel ◽  
Lalao Rakotomanana ◽  
Dominique P. Pioletti

Sign in / Sign up

Export Citation Format

Share Document