Validation of Digital Image Correlation Techniques for Strain Measurement in Biomechanical Test Models

Author(s):  
Renee D. Rogge ◽  
Scott R. Small ◽  
Derek B. Archer ◽  
Michael E. Berend ◽  
Merrill A. Ritter

Many previous biomechanical studies of bone and bone substitutes have estimated strains in these materials using strain gages. The purpose of this study was to compare digital image correlation (DIC) strain measurements to those obtained from strain gages in order to assess the applicability of DIC technology to common biomechanical testing scenarios. Compression and bending tests were conducted on aluminum alloy, polyurethane foam, and laminated polyurethane foam specimens. Results showed no significant differences in the principal strain values (or the variances) between strain gage and DIC measurements on the aluminum alloy and laminated polyurethane foam specimens. There were significance differences between the principal strain measurements of the non-laminated polyurethane foam specimens, but the deviation from the theoretical results was similar for both measurement techniques. In summary, DIC techniques provide similar results to those obtained from strain gages and also provide full field strain results.

2016 ◽  
Vol 140 ◽  
pp. 192-201 ◽  
Author(s):  
Mahoor Mehdikhani ◽  
Mohammadali Aravand ◽  
Baris Sabuncuoglu ◽  
Michaël G. Callens ◽  
Stepan V. Lomov ◽  
...  

Author(s):  
Tzu-Yu Kuo ◽  
Wei-Chung Wang ◽  
Chun-I Chu ◽  
Jia-He Chen ◽  
Te-Heng Hung ◽  
...  

In this study, deformation of cylindrical shells under axial compressive load was studied and characterized by a noncontact detection technique, called digital image correlation (DIC). As opposed to commonly used strain gages for measuring structure strains at specific points, the DIC method can render not only 2D but also 3D full-field measurements for strain as well as structure deformation. The accuracy of strain measurement obtained using the DIC method was carefully validated by following ASTM standard E8 for strain measurement using strain gages in tensile tests. The DIC technique provided convenient measurements for characterizing the buckling behaviors of defective cylindrical shell samples. This study has engineering implications for providing 3D strain and deformation analyses to ensure structure reliability and safety.


2007 ◽  
Vol 7-8 ◽  
pp. 265-270 ◽  
Author(s):  
Thorsten Siebert ◽  
Thomas Becker ◽  
Karsten Spiltthof ◽  
Isabell Neumann ◽  
Rene Krupka

The reliability for each measurement technique depends on the knowledge of it’s uncertainty and the sources of errors of the results. Among the different techniques for optical measurement techniques for full field analysis of displacements and strains, digital image correlation (DIC) has been proven to be very flexible, robust and easy to use, covering a wide range of different applications. Nevertheless the measurement results are influenced by statistical and systematical errors. We discuss a 3D digital image correlation system which provides online error information and the propagation of errors through the calculation chain to the resulting contours, displacement and strains. Performance tests for studying the impact of calibration errors on the resulting data are shown for static and dynamic applications.


Author(s):  
Kenneth I. Aycock ◽  
Jason D. Weaver ◽  
Harshad M. Paranjape ◽  
Karthikeyan Senthilnathan ◽  
Craig Bonsignore ◽  
...  

2014 ◽  
Vol 692 ◽  
pp. 490-496 ◽  
Author(s):  
Mamidala Ramulu ◽  
Trent Greenwell ◽  
Paul Labossiere

Experimental investigation is conducted to examine, evaluate, and characterize the fundamental elastic-plastic stress/strain response of friction stir-welded butt joints in thin-sheet, fine grain Ti-6Al-4V titanium alloy under normal tensile loading using traditional global stress-strain tensile testing and the full-field displacement measurement techniques of Digital Image Correlation (DIC). It was found that overall strength of friction stir-welded Ti-6Al-4V is comparable to the accepted values for mill-annealed Ti-6Al-4Valloy. Overall strain performance of friction stir-welded Ti-6Al-4V is roughly half that of the accepted values for pure mill-annealed Ti-6Al-4V. In addition, friction stir-welded Ti-6Al-4V demonstrates a consistent pattern of strain localization between the onset of yielding and ultimate failure.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Hannah Gustafson ◽  
Gunter Siegmund ◽  
Peter Cripton

Strain gages are commonly used to measure bone strain, but only provide strain at a single location. Digital image correlation (DIC) is an optical technique that provides the displacement, and therefore strain, over an entire region of interest on the bone surface. This study compares vertebral body strains measured using strain gages and DIC. The anterior surfaces of 15 cadaveric porcine vertebrae were prepared with a strain rosette and a speckled paint pattern for DIC. The vertebrae were loaded in compression with a materials testing machine, and two high-resolution cameras were used to image the anterior surface of the bones. The mean noise levels for the strain rosette and DIC were 1 με and 24 με, respectively. Bland–Altman analysis was used to compare strain from the DIC and rosette (excluding 44% of trials with some evidence of strain rosette failure or debonding); the mean difference ± 2 standard deviations (SDs) was −108 με ± 702 με for the minimum (compressive) principal strain and −53 με ± 332 με for the maximum (tensile) principal strain. Although the DIC has higher noise, it avoids the relatively high risk we observed of strain gage debonding. These results can be used to develop guidelines for selecting a method to measure strain on bone.


Sign in / Sign up

Export Citation Format

Share Document