Control of Oscillations of a Wing Subjected to 3D Unsteady Subsonic Aerodynamic Loads Using Piezoelectric Actuators

Author(s):  
Tahereh Mirmohammadi ◽  
Arun K. Misra ◽  
Dan Mateescu

In the recent years, using piezoelectric material as sensors and actuators has drawn significant attention in vibration analysis and control of structures. In the present paper, bonded piezoelectric sensors and actuators have been used to control the aeroelastic oscillations of a cantilever wing under the effects of three-dimensional unsteady subsonic aerodynamic loading. An aerodynamic model using a numerical panel method is developed and validated to calculate the three-dimensional unsteady aerodynamic loading and finite element formulation is applied to model the wing structure as a cantilever plate undergoing small transverse oscillations. The structural and aerodynamic models are combined to simulate the aeroelastic oscillations and interchange the data simultaneously. An active feedback control method to suppress the oscillations is presented and investigated. Finally, an analysis is performed to examine the effects of actuator placement on the wing surface in suppression of oscillations.

2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
P. K. Santra ◽  
G. S. Mahapatra ◽  
G. R. Phaijoo

The paper investigates the dynamical behaviors of a two-species discrete predator-prey system with Crowley–Martin functional response incorporating prey refuge proportional to prey density. The existence of equilibrium points, stability of three fixed points, period-doubling bifurcation, Neimark–Sacker bifurcation, Marottos chaos, and Control Chaos are analyzed for the discrete-time domain. The time graphs, phase portraits, and bifurcation diagrams are obtained for different parameters of the model. Numerical simulations and graphics show that the discrete model exhibits rich dynamics, which also present that the system is a chaotic and complex one. This paper attempts to present a feedback control method which can stabilize chaotic orbits at an unstable equilibrium point.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Xue Zhang ◽  
Qing-ling Zhang

This paper studies systematically a differential-algebraic prey-predator model with time delay and Allee effect. It shows that transcritical bifurcation appears when a variation of predator handling time is taken into account. This model also exhibits singular induced bifurcation as the economic revenue increases through zero, which causes impulsive phenomenon. It can be noted that the impulsive phenomenon can be much weaker by strengthening Allee effect in numerical simulation. On the other hand, at a critical value of time delay, the model undergoes a Hopf bifurcation; that is, the increase of time delay destabilizes the model and bifurcates into small amplitude periodic solution. Moreover, a state delayed feedback control method, which can be implemented by adjusting the harvesting effort for biological populations, is proposed to drive the differential-algebraic system to a steady state. Finally, by using Matlab software, numerical simulations illustrate the effectiveness of the results.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Weiping Guo ◽  
Diantong Liu

A feedback control method and an adaptive feedback control method are proposed for Chua's circuit chaos system, which is a simple 3D autonomous system. The asymptotical stability is proven with Lyapunov theory for both of the proposed methods, and the system can be dragged to one of its three unstable equilibrium points respectively. Simulation results show that the proposed methods are valid, and control performance is improved through introducing adaptive technology.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Jing Wang ◽  
Shaojuan Ma ◽  
Peng Hao ◽  
Hehui Yuan

In this paper, the Hopf bifurcation and control of the magnetic bearing system under an uncertain parameter are investigated. Firstly, the two-degree-of-freedom magnetic bearing system model with uncertain parameter is established. The method of orthogonal polynomial approximation is used to obtain the equivalent magnetic bearing model which is deterministic. Secondly, combining mathematical analysis tools and numerical simulations, the Hopf bifurcation of the equivalent model is analyzed. Finally, a hybrid feedback control method (linear feedback control method combined with nonlinear stochastic feedback control method) is introduced to control the Hopf bifurcation behavior of the magnetic bearing system.


2003 ◽  
Vol 13 (01) ◽  
pp. 163-175 ◽  
Author(s):  
TETSUSHI UETA ◽  
GUANRONG CHEN

This paper investigates the complex dynamics, synchronization and control of chaos in a system of strongly connected Wilson–Cowan neural oscillators. Some typical synchronized periodic solutions are analyzed by using the Poincaré mapping method, for which bifurcation diagrams are obtained. It is shown that topological change of the synchronization mode is mainly caused and carried out by the Neimark–Sacker bifurcation. Finally, a simple feedback control method is presented for stabilizing an in-phase synchronizing periodic solution embedded in the chaotic attractor of a higher-dimensional model of such coupled neural oscillators.


2011 ◽  
Vol 11 (04) ◽  
pp. 857-879 ◽  
Author(s):  
XUE ZHANG ◽  
QINGLING ZHANG

This paper studies a plankton–fish model with distributed delay in the context of marine plankton interaction together with predation by planktotrophic fish. The delay indicates that the growth of the zooplankton depends on the past density of phytoplankton. The positive equilibrium point and its local stability are investigated. Using the average time delay as bifurcation parameter, we obtain the conditions of the existence of Hopf bifurcation. Based on the normal form and center manifold theorem, stability, direction, and other properties of bifurcating periodic solutions are derived. Moreover, a state feedback control method, which can be implemented by adjusting the harvesting for zooplankton population, is proposed to drive the plankton–fish system to a steady state. Numerical simulations illustrate the effectiveness of results and the related biological implications are discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Jian-qun Han ◽  
Xu-dong Shi ◽  
Hong Sun

It has been realized that synchronization using linear feedback control method is efficient compared to nonlinear feedback control method due to the less computational complexity and the synchronization error. For the problem of feedback synchronization of Duffing chaotic system, in the paper, we firstly established three-dimensional Duffing system by method of variable decomposition and, then, studied the synchronization of Duffing chaotic system and designed the control law based on linear feedback control and Lyapunov stability theory. It is proved theoretically that the two identical integer order chaotic systems are synchronized analytically and numerically.


1991 ◽  
Vol 113 (3) ◽  
pp. 500-505 ◽  
Author(s):  
H. S. Tzou ◽  
C. I. Tseng

“Smart” continua with integrated sensor/actuator for structural identification and control have drawn much attention in recent years due to the rapid development of high-performance “smart” structures. The continua are distributed and flexible in nature. Thus, distributed dynamic measurement and active vibration control are of importance to their high-demanding performance. In this paper, continua (shells or plates) integrated with distributed piezoelectric sensors and actuators are studied using a finite element technique. A new piezoelectric finite element with internal degrees of freedom is derived. Two control algorithms, namely, constant gain feedback control and Lyapunov control, are implemented. Structural identification and control of a plate model with distributed piezoelectric sensor/actuator is studied. Distributed modal voltage and control effectiveness of mono and biaxially polarized piezoelectric actuators are evaluated.


2014 ◽  
Vol 1039 ◽  
pp. 345-352
Author(s):  
Guang Hua Fu ◽  
Xue Mei Liu ◽  
Jin Yuan

Tree-pruning robot can appear tilt problem in the climbing process because of the trunk shape and mechanical mechanism of its climbing legs. According to the robot's tilt problem, this paper guarantees the level of tree-pruning robot using the method of controlling the motor speed at different locations. This paper establishes a three-dimensional virtual prototype model about tree-pruning robot in ADAMS software, design controller in Matlab software, and conduct ADAMS-Matlab co-simulation. The simulation results and experimental prototypes show that the designed control method can effectively overcome the tilt problem in the crawling process.


Sign in / Sign up

Export Citation Format

Share Document