Energy Harvesting From Arterial Blood Pressure for Powering Embedded Microsensors in Human Brain

Author(s):  
Aditya Nanda ◽  
M. Amin Karami

This manuscript investigates energy harvesting from arterial blood pressure via the piezoelectric effect for the purpose of powering embedded micro-sensors in the human brain. One of the major hurdles in recording and measuring electrical data in the human nervous system is the lack of implantable and long term interfaces that record neural activity for extended periods of time. Recently, some authors have proposed micro sensors implanted deep in the brain that measure local electrical and physiological data which is then communicated to an external interrogator. This paper proposes a way of powering such interfaces. The geometry of the proposed harvester consists of a piezoelectric, circular, curved bimorph that fits into the blood vessel (specifically, the Carotid artery) and undergoes bending motion because of blood pressure variation. In addition, the harvester thickness is constrained such that it does not modify arterial wall dynamics. This transforms the problem into a known strain problem and the integral form of Gauss’s law is used to obtain an equation relating arterial wall motion to the induced voltage. The theoretical model is validated by means of a Multiphysics 3D-FEA simulation comparing the harvested power at different load resistances. The peak harvested power achieved for the Carotid artery (proximal to Brain), with PZT-5H, was 11.7 μ W. The peak power for the Aorta was 203.4 μ W. Further, the variation of harvested power with variation in harvester width and thickness, arterial contractility and the pulse rate is investigated. Moreover, potential application of the harvester as a chronic, implantable and real-time Blood pressure sensor is considered. Energy harvested via this mechanism will also have applications in long-term, implantable Brain Micro-stimulation.

1995 ◽  
Vol 78 (5) ◽  
pp. 1793-1799 ◽  
Author(s):  
M. Kamitomo ◽  
T. Ohtsuka ◽  
R. D. Gilbert

We exposed fetuses to high-altitude (3,820 m) hypoxemia from 30 to 130 days gestation, when we measured fetal heart rate, right and left ventricular outputs with electromagnetic flow probes, and arterial blood pressure during an isoproterenol dose-response infusion. We also measured the distribution of cardiac output with radiolabeled microspheres during the maximal isoproterenol dose. Baseline fetal arterial blood pressure was higher in long-term hypoxemic fetuses (50.1 +/- 1.3 vs. 43.4 +/- 1.0 mmHg) but fell during the isoproterenol infusion to 41.3 +/- 1.4 and 37.5 +/- 1.4 mmHg, respectively, at the highest dose. Heart rate was the same in both groups and did not differ during isoproterenol infusion. Baseline fetal cardiac output was lower in the hypoxemic group (339 +/- 18 vs. 436 +/- 19 ml.min-1.kg-1) due mainly to a reduction in right ventricular output. During the isoproterenol infusion, right ventricular output increased to the same extent in both hypoxemic and normoxic fetuses (approximately 35%); however, left ventricular output increased only approximately 15% in the hypoxemic group compared with approximately 40% in the normoxic group. The percent change in individual organ blood flows during isoproterenol infusion in the hypoxemic groups was not significantly different from the normoxic group. All of the mechanisms that might be responsible for the differential response of the fetal left and right ventricles to long-term hypoxia are not understood and need further exploration.


2015 ◽  
pp. 211-215
Author(s):  
B. Kr�nig ◽  
K. Dufey ◽  
P. Reinhardt ◽  
J. Jahnecke ◽  
H. P. Wolff

1984 ◽  
Vol 4 (3) ◽  
pp. 397-406 ◽  
Author(s):  
Pierre Lacombe ◽  
Jacques Seylaz

The question of the significance of the cerebrovascular effects of stressful situations in animals is still controversial. In the present article, an experimental model of immobilization stress in the rabbit is described, and its specificity in relation to arterial blood pressure and PaCO2 is investigated. CBF was measured with the multiregional tissue sampling technique using [14C]-ethanol as tracer. After dissipation of althesin anesthesia, the stress reaction was elicited by tactile abdominal stimuli. The response was evidenced by an instantaneous acute hypertension (+ 33.8% during the CBF measurement period). Within the first minute of the reaction, the CBF was significantly increased in all nine structures studied by 39% (caudate nucleus) to 82% (parietotemporal cortex). The study of the influence of arterial blood pressure and the PaCO2 on CBF showed that cerebrovascular autoregulation and CO2 sensitivity were differently affected in the various structures during the stress reaction. However, the stress response of the brain circulation could not be entirely ascribed to one or both of these two systemic factors, thus suggesting the contribution of a local intrinsic activation. The model presented here could be useful for long-term studies of cerebrovascular repercussions of repeated acute hypertensions of a stressful nature.


Author(s):  
Aditya Nanda ◽  
M. Amin Karami

This paper investigates energy harvesting from arterial blood pressure via the piezoelectric effect for the purpose of powering embedded micro-sensors in the brain. Blood flow is highly dynamic and arterial blood pressure varies, in the average human blood vessel, from 120 mm of Hg to 80 mm of Hg and we look at transduction of this pressure variation to electric energy via the piezoelectric effect. We propose two different geometries for this purpose. Initially, we look at the energy harvested by a cylinder, coated with PVDF (Polyvinylidene fluoride) patches, placed inside an artery acted upon by blood pressure. The arrangement is similar to that of a stent which is a cylinder placed in veins and arteries to prevent obstruction in blood flow. The governing equations of the harvester are obtained using Hamilton’s principle. Pressure acting in arteries is radially directed and this is used to simplify the governing equations. Specifically, radial pressure directed on the inner wall of the cylinder is assumed to excite only the radial breathing mode of vibration. Using this, the transfer function relating pressure to the induced voltage across the surface of the harvester is derived and the power harvested by the cylindrical harvester is obtained for different shunt resistances. However, the natural frequency of the radial breathing mode (RBM) is found to be very high and the harvested power at the frequencies of interest (3 Hz – 20 Hz) is very low. To decrease the natural frequency, we propose a novel streaked cylinder design that involves cutting the cylinder along the length, transforming it to a curved beam with an opening angle of 360 deg.. The governing equations corresponding to a circular curved beam, with PVDF patches on top and bottom surfaces, are derived using Hamilton’s principle and modal analysis is used to obtain the transfer function relating radial pressure to induced voltage. We validate the derived transfer function by evaluating the harvested power for a beam with very large radius of curvature; in which case, the curved beam becomes a straight beam and the harvested power is compared with the same for a straight beam (which exists in the literature). Further, we conduct design analyses and obtain the power as the geometric parameters of the harvester are varied for the purpose of optimizing the dimensions of harvester for maximal power generation. The power harvested by the harvester, at lower frequencies is deemed to be satisfactory.


Sign in / Sign up

Export Citation Format

Share Document