Experimental Investigation of the Design Parameters and of the Working Conditions on the Global Characteristics of a Squeeze Film Damper

Author(s):  
Cyril Defaye ◽  
Philippe Carpentier ◽  
Charles Debailleux ◽  
Mihai¨ Arghir ◽  
Olivier Bonneau ◽  
...  

Squeeze film dampers (SFD) is a topical subject since almost four decades [1, 2] but the need of experimental result is still stringent. The present work introduces the results of an experimental program aimed to investigate the influence of the design parameters and of the working conditions on the global characteristics of sealed SFD.

2009 ◽  
Vol 76-78 ◽  
pp. 252-257
Author(s):  
Tian Biao Yu ◽  
Ya Dong Gong ◽  
Wan Shan Wang

In order to improve quality of deep hole machining, a new method of deep hole honing based on squeeze film damping technology is put forward. For analysis effect on damper parameters on honing quality, motion differential equation of honing spindle with a squeeze film damper (SFD) is established according to D' Alembert principle and according simulations are studied. Spindle of deep hole honing with a SFD is designed based on the result of simulations and experiments are carried on. Experimental result shows that SFD with reasonable design parameters has excellent damping function to honing spindle, and it can make the vibration of honing spindle reduced 20%~30% and the quality of deep hole machining improved 10%~20%.


Author(s):  
R. A. Cookson ◽  
L. J. Dainton

An experimental investigation has been carried out into the influence of side-plate flow restrictors on the performance of a squeeze-film damper bearing. The experimental rig used was a flexible rotor with a disc positioned mid-way between two squeeze-film damper bearings. One of the squeeze-film dampers was fitted with side-plates which could be adjusted and accurately located with respect to the squeeze-film damper journal. It has been found that the influence of the side-plate clearance on the ability of the squeeze-film damper to reduce the amplitude of the central disc can be considerable if the side-plate clearance is less than the radial clearance. As the side-plate clearance reduces towards zero, the effectiveness of the squeeze-film damper diminishes until the amplitudes obtained are the same as those measured when the rolling-contact bearing is rigidly supported. An interesting type of precessing elliptical orbit was discovered for conditions where the ‘jump’ phenomenon was operating.


2009 ◽  
Vol 407-408 ◽  
pp. 545-549
Author(s):  
Tian Biao Yu ◽  
Rui Wen ◽  
Ya Dong Gong ◽  
Wan Shan Wang

. In order to improve quality of deep hole finishing, a new method of deep hole honing based on squeeze film technology is put forward. According to fluid lubricates theory, Renault equation of deep hole honing squeeze film damper (SFD) is established, squeeze film force is solved by immense short bearing theory and the effect of the eccentricity of SFD on the damping coefficient is analyzed by MATLAB. Spindle of deep hole honing with SFD is designed based on theory research, and experimental research is carried on. Experimental result shows that SFD with reasonable design parameters has excellent damping function to honing spindle, and it can make vibration of honing spindle reduced 20%~30% and quality of deep hole machining improved 10%~20%.


Author(s):  
H. R. Born

This paper presents an overview of the development of a reliable bearing system for a new line of small turbochargers where the bearing system has to be compatible with a new compressor and turbine design. The first part demonstrates how the increased weight of the turbine, due to a 40 % increase in flow capacity, influences the dynamic stability of the rotor-bearing system. The second part shows how stability can be improved by optimizing important floating ring parameters and by applying different bearing designs, such as profiled bore bearings supported on squeeze film dampers. Test results and stability analyses are included as well as the criteria which led to the decision to choose a squeeze film backed symmetrical 3-lobe bearing for this new turbocharger design.


2019 ◽  
Vol 254 ◽  
pp. 08005 ◽  
Author(s):  
Petr Ferfecki ◽  
Jaroslav Zapoměl ◽  
Marek Gebauer ◽  
Václav Polreich ◽  
Jiří Křenek

Rotor vibration attenuation is achieved with damping devices which work on different, often mutually coupled, physical principles. Squeeze film dampers are damping devices that have been widely used in rotordynamic applications. A new concept of a 5-segmented integral squeeze film damper, in which a flexure pivot tilting pad journal bearing is integrated, was investigated. The damper is studied for the eccentric position between the outer and inner ring of the squeeze film land. The ANSYS CFX software was used for solving the pressure and velocity distribution. The development of the complex three-dimensional computational fluid dynamics model of the squeeze film damper, learning more about the effect of the forces in the damper, and the knowledge about the behaviour of the flow are the principal contributions of this article.


Author(s):  
J. W. Lund ◽  
A. J. Smalley ◽  
J. A. Tecza ◽  
J. F. Walton

Squeeze-film dampers are commonly used in gas turbine engines and have been applied successfully in a great many new designs, and also as retrofits to older engines. Of the mechanical components in gas turbines, squeeze-film dampers are the least understood. Their behavior is nonlinear and strongly coupled to the dynamics of the rotor systems on which they are installed. The design of these dampers is still largely empirical, although they have been the subject of a large number of past investigations. To describe recent analytical and experimental work in squeeze-film damper technology, two papers are planned. This abstract outlines the first paper, Part 1, which concerns itself with squeeze-film damper analysis. This paper will describe an analysis method and boundary conditions which have been developed recently for modelling dampers, and in particular, will cover the treatment of finite length, feed and drain holes and fluid inertia effects, the latter having been shown recently to be of great importance in predicting rotor system behavior. A computer program that solves the Reynolds equation for the above conditions will be described and sample calculation results presented.


Author(s):  
Zenglin Guo ◽  
Toshio Hirano ◽  
R. Gordon Kirk

The traditional method for bearing and damper analysis usually involves a development of rather complicated numerical calculation programs that may just focus on a simplified and specific physical model. The application of the general CFD codes may make this analysis available and effective where complex flow geometries are involved or when more detailed solutions are needed. In this study, CFX-TASCflow is employed to simulate various fixed geometry fluid-film bearing and damper designs. Some of the capabilities in CFX-TASCflow are applied to simulate the pressure field and calculate the static and dynamic characteristics of hydrodynamic, hydrostatic and hybrid bearings as well as squeeze film dampers. The comparison between the CFD analysis and current computer programs used in industry has been made. The results show reasonable agreement in general. Some of possible reasons for the differences are discussed. It leaves room for further investigation and improvement on the methods of computation.


2005 ◽  
Vol 127 (2) ◽  
pp. 445-451 ◽  
Author(s):  
Zenglin Guo ◽  
Toshio Hirano ◽  
R. Gordon Kirk

The traditional method for bearing and damper analysis usually involves a development of rather complicated numerical calculation programs that may just focus on a simplified and specific physical model. The application of the general CFD codes may make this analysis available and effective where complex flow geometries are involved or when more detailed solutions are needed. In this study, CFX-TASCflow is employed to simulate various fixed geometry fluid-film bearing and damper designs. Some of the capabilities in CFX-TASCflow are applied to simulate the pressure field and calculate the static and dynamic characteristics of hydrodynamic, hydrostatic, and hybrid bearings as well as squeeze film dampers. The comparison between the CFD analysis and current computer programs used in industry has been made. The results show reasonable agreement in general. Some of the possible reasons for the differences are discussed. It leaves room for further investigation and improvement on the methods of computation.


Author(s):  
E. S. Zorzi ◽  
G. Burgess ◽  
R. Cunningham

This paper describes the design and testing of an elastomer damper on a super-critical power transmission shaft. The elastomers were designed to provide acceptable operation through the fourth bending mode and to control synchronous as well as nonsynchronous vibration throughout the operating range. The design of the elastomer was such that it could be incorporated into the system as a replacement for a squeeze-film damper without a reassembly, which could have altered the imbalance of the shaft. This provided a direct comparison of the elastomer and squeeze-film dampers without having to assess the effect of shaft imbalance changes.


1983 ◽  
Vol 105 (3) ◽  
pp. 525-529 ◽  
Author(s):  
R. Holmes

This paper describes the following roles of a squeeze-film damper when used in gas turbine applications as a means of reducing vibration and transmitted force due to unbalance: (a) as an element in parallel with a soft spring in a vibration isolator; and (b) as an element in series with the stiffness of the engine pedestal. The effects of cavitation on performance are elucidated, and the dangers of jump phenomena and subsynchronous response are discussed. Experimental work is described in which both roles of the squeeze-film damper are investigated and the results are compared with theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document