scholarly journals From Heavy Fuel Oil to Liquified Natural Gas: Electricity Generation Transition in Malta

Author(s):  
Nirvana Avellino ◽  
Juan José Bonello
2018 ◽  
Vol 29 (4) ◽  
pp. 591-612 ◽  
Author(s):  
Dayong Wu ◽  
Changwei Yuan ◽  
Hongchao Liu

This paper analyzes the decoupling states between CO2 emissions and transport development in China from 1994 to 2012. The results indicate that, at the aggregate level, the Chinese transport sector is far from reaching the decoupling state. Negative decoupling or non-decoupling years account for 72.2% of the study period. At the disaggregated level, the decoupling states between CO2 emissions and eight primary fuels are as follows: raw coal and coke are in the absolute decoupling state; crude oil, gasoline and diesel are in the weak negative state; and the other three types (kerosene, heavy fuel oil, and natural gas) are in the strong negative decoupling state. Policy implications underneath the identified decoupling states are also revealed to help China build a more sustainable transportation system.


Author(s):  
Vikram Muralidharan ◽  
Matthieu Vierling

Power generation in south Asia has witnessed a steep fall due to the shortage of natural gas supplies for power plants and poor water storage in reservoirs for low hydro power generation. Due to the current economic scenario, there is worldwide pressure to secure and make more gas and oil available to support global power needs. With constrained fuel sources and increasing environmental focus, the quest for higher efficiency would be imminent. Natural gas combined cycle plants operate at a very high efficiency, increasing the demand for gas. At the same time, countries may continue to look for alternate fuels such as coal and liquid fuels, including crude and residual oil, to increase energy stability and security. In over the past few decades, the technology for refining crude oil has gone through a significant transformation. With the advanced refining process, there are additional lighter distillates produced from crude that could significantly change the quality of residual oil used for producing heavy fuel. Using poor quality residual fuel in a gas turbine to generate power could have many challenges with regards to availability and efficiency of a gas turbine. The fuel needs to be treated prior to combustion and needs a frequent turbine cleaning to recover the lost performance due to fouling. This paper will discuss GE’s recently developed gas turbine features, including automatic water wash, smart cooldown and model based control (MBC) firing temperature control. These features could significantly increase availability and improve the average performance of heavy fuel oil (HFO). The duration of the gas turbine offline water wash sequence and the rate of output degradation due to fouling can be considerably reduced.


Author(s):  
M Coelho ◽  
F Nash ◽  
D Linsell ◽  
J. P. Barciela

The contribution of cogeneration plants to a reduction in primary energy consumption will be important not only in lowering emissions to the atmosphere but also in cutting production costs by increasing the overall efficiency of fuel conversion to the electricity and heat used by process industries. This paper demonstrates the importance of the interactions of the utility needs of a process with the development and design of a cogeneration system to maximize fuel efficiency and achieve environmental compliance for a chemical plant. The cogeneration system in this project is based on a diesel cycle engine burning heavy fuel oil (HFO), driving an alternator and with an exhaust gas heat recovery boiler supplementary fired with either HFO or natural gas. The normal operation of the cogeneration plant is with the engine running at 95–100 per cent maximum continuous rating (MCR) with the supplementary firing of the boiler modulating to meet the process requirements for saturated steam at 10 barg. In addition to recovering waste heat from the engine exhaust gas (EEG), supplementary firing using the excess oxygen in the exhaust gas enables the process steam required by the plant to be produced without the loss of energy involved in heating combustion air. At the same time the reduced volume of oxygen available to the flame reduces peak temperature and NOx emissions, this being further enhanced by the phased combustion design of the burner. The technology demonstrated in this application is generally as used in gas turbine cogeneration cycles burning natural gas. The use of HFO in this instance necessitated the use of a reciprocating engine driven generator and the development of supplementary firing of the exhaust gases. The successful development of the technology enables this reciprocating engine based cogeneration system to be scaled up or, possibly more importantly, down utilizing HFO, natural gas or renewable derived liquid or gaseous fuels. Its implementation using spark ignition engine generators retrofitted to economic boilers may be one way general industry in the United Kingdom might meet its climate change levy (CCL) targets for energy reduction and help approach the government's carbon reduction requirements.


2020 ◽  
Vol 12 (22) ◽  
pp. 9585
Author(s):  
Yu Yong Ung ◽  
Park Sung Ho ◽  
Jung Dong Ho ◽  
Lee Chang Hee

The International Maritime Organization has strengthened global environmental regulations related to sulfur and nitrogen oxides contained in ship fuel oil since the beginning of 2020. One strategy to comply with the regulations is to fuel ships with liquefied natural gas (LNG) rather than with traditional heavy fuel oil. China and Japan are both developing a business structure for the bunkering of LNG through public–private partnerships to expand their leadership in the field in Northeast Asia and secure a competitive advantage. Compared to China and Japan, Korea has relatively inadequate laws, policy support, and best practices for safe and efficient LNG bunkering for ships. This article provides a comprehensive overview of the LNG bunkering regulation systems in China and Japan and addresses how these systems can be mirrored by Korea to improve the Korean system. It compares the legislative and normative rules of China and Japan regarding the complex global scenario of maritime transportation. The results show that Korea must revise its guidelines and create the advanced institutional framework required for the LNG bunkering market to support an eco-friendly shipping industry and maintain a competitive edge against China and Japan.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 985
Author(s):  
Marco Altosole ◽  
Giovanni Benvenuto ◽  
Raphael Zaccone ◽  
Ugo Campora

From the working data of a dual-fuel marine engine, in this paper, we optimized and compared two waste-heat-recovery single-pressure steam plants—the first characterized by a saturated-steam Rankine cycle, the other by a superheated-steam cycle–using suitably developed simulation models. The objective was to improve the recovered heat from the considered engine, running with both heavy fuel oil and natural gas. The comparison was carried out on the basis of energetic and exergetic considerations, concerning various aspects such as the thermodynamic performance of the heat-recovery steam generator and the efficiency of the Rankine cycle and of the combined dual-fuel-engine–waste-heat-recovery plant. Other important issues were also considered in the comparison, particularly the dimensions and weights of the steam generator as a whole and of its components (economizer, evaporator, superheater) in relation to the exchanged thermal powers. We present the comparison results for different engine working conditions and fuel typology (heavy fuel oil or natural gas).


2007 ◽  
Vol 27 (11-12) ◽  
pp. 1944-1950 ◽  
Author(s):  
Daniel R. Schneider ◽  
Željko Bogdan

2010 ◽  
Vol 31 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Andrzej Ziębik ◽  
Damian Szegda ◽  
Bjørn Qvale ◽  
Brian Elmegaard

Thermodynamic simulation analysis of a multifuel CHP plant basing on the technological diagram of Avedøre unit 2 The paper presents the results of a simulative thermodynamic analysis of a multifuel CHP plant basing on the technological diagram of Avedøre 2. Calculations have been carried out for the operation of Avedøre 2 plant in the district heating mode. Several variants of simulation have been considered, determined by the choice of operation of the respective plants, viz. main boiler fired with natural gas, main and biomass boiler, main boiler and GT plant, joint operation of the main and biomass boiler and GT plant, main boiler (fired with heavy fuel oil or/and wood chips) and biomass boiler and GT plant. For each variants a diagram of iso-fuel curves has been developed, illustrating the variability of useful effects (power output and district heat) at various loads of the CHP steam part. In case of the variant in which the main boiler and GT are in operation with natural gas as fuel the exemplary energy indices were determined.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8502
Author(s):  
Li Chin Law ◽  
Beatrice Foscoli ◽  
Epaminondas Mastorakos ◽  
Stephen Evans

Decarbonization of the shipping sector is inevitable and can be made by transitioning into low- or zero-carbon marine fuels. This paper reviews 22 potential pathways, including conventional Heavy Fuel Oil (HFO) marine fuel as a reference case, “blue” alternative fuel produced from natural gas, and “green” fuels produced from biomass and solar energy. Carbon capture technology (CCS) is installed for fossil fuels (HFO and liquefied natural gas (LNG)). The pathways are compared in terms of quantifiable parameters including (i) fuel mass, (ii) fuel volume, (iii) life cycle (Well-To-Wake—WTW) energy intensity, (iv) WTW cost, (v) WTW greenhouse gas (GHG) emission, and (vi) non-GHG emissions, estimated from the literature and ASPEN HYSYS modelling. From an energy perspective, renewable electricity with battery technology is the most efficient route, albeit still impractical for long-distance shipping due to the low energy density of today’s batteries. The next best is fossil fuels with CCS (assuming 90% removal efficiency), which also happens to be the lowest cost solution, although the long-term storage and utilization of CO2 are still unresolved. Biofuels offer a good compromise in terms of cost, availability, and technology readiness level (TRL); however, the non-GHG emissions are not eliminated. Hydrogen and ammonia are among the worst in terms of overall energy and cost needed and may also need NOx clean-up measures. Methanol from LNG needs CCS for decarbonization, while methanol from biomass does not, and also seems to be a good candidate in terms of energy, financial cost, and TRL. The present analysis consistently compares the various options and is useful for stakeholders involved in shipping decarbonization.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mamdouh Higazy ◽  
Khaled S. M. Essa ◽  
Fawzia Mubarak ◽  
El-Sayed M. El-Sayed ◽  
Abdelsattar M. Sallam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document