Cogeneration—the development and implementation of a cogeneration system for a chemical plant, using a reciprocating heavy fuel oil engine with a supplementary fired boiler

Author(s):  
M Coelho ◽  
F Nash ◽  
D Linsell ◽  
J. P. Barciela

The contribution of cogeneration plants to a reduction in primary energy consumption will be important not only in lowering emissions to the atmosphere but also in cutting production costs by increasing the overall efficiency of fuel conversion to the electricity and heat used by process industries. This paper demonstrates the importance of the interactions of the utility needs of a process with the development and design of a cogeneration system to maximize fuel efficiency and achieve environmental compliance for a chemical plant. The cogeneration system in this project is based on a diesel cycle engine burning heavy fuel oil (HFO), driving an alternator and with an exhaust gas heat recovery boiler supplementary fired with either HFO or natural gas. The normal operation of the cogeneration plant is with the engine running at 95–100 per cent maximum continuous rating (MCR) with the supplementary firing of the boiler modulating to meet the process requirements for saturated steam at 10 barg. In addition to recovering waste heat from the engine exhaust gas (EEG), supplementary firing using the excess oxygen in the exhaust gas enables the process steam required by the plant to be produced without the loss of energy involved in heating combustion air. At the same time the reduced volume of oxygen available to the flame reduces peak temperature and NOx emissions, this being further enhanced by the phased combustion design of the burner. The technology demonstrated in this application is generally as used in gas turbine cogeneration cycles burning natural gas. The use of HFO in this instance necessitated the use of a reciprocating engine driven generator and the development of supplementary firing of the exhaust gases. The successful development of the technology enables this reciprocating engine based cogeneration system to be scaled up or, possibly more importantly, down utilizing HFO, natural gas or renewable derived liquid or gaseous fuels. Its implementation using spark ignition engine generators retrofitted to economic boilers may be one way general industry in the United Kingdom might meet its climate change levy (CCL) targets for energy reduction and help approach the government's carbon reduction requirements.

Author(s):  
F Nash

This paper covers the development of a cogeneration (combined heat and power) system based upon a compression ignition, reciprocating, internal combustion engine and a standard three-pass economic shell-and-tube industrial boiler as well as the first commercial application of the system. An innovative feature of this cogeneration system is that additional fuel is burnt to utilize the free oxygen in the engine exhaust gas (a practice common with gas turbines but rarely attempted with reciprocating engines) to provide a significant, fuel-efficient and easily variable increase in the high-quality heat, that is steam, output from the system. The initial development work was done in 1983 using heavy fuel oil as the fuel to both engine and burner, while the first commercial application in 1988 utilizes a dual-fuel engine (gas and diesel oil pilot or diesel oil) and dual firing of the exhaust gas duct burner with gas or diesel oil.


2010 ◽  
Author(s):  
Herbert Roeser ◽  
Dilip Kalyankar

Ships are an integral part of modern commercial transport, leisure travel, and military system. A diesel engine was used for the first time for the propulsion of a ship sometime in the 1910s and has been the choice for propulsion and power generation, ever since. Since the first model used in ship propulsion, the diesel engine has come a long way with several technological advances. A diesel engine has a particularly high thermal efficiency. Added to it, the higher energy density of the diesel fuel compared to gasoline fuel makes it inherently, the most efficient internal combustion engine. The modern diesel engine also has a very unique ability to work with a variety of fuels like diesel, heavy fuel oil, biodiesel, vegetable oils, and several other crude oil distillates which is very important considering the shortage of petroleum fuels that we face today. In spite of being highly efficient and popular and in spite of all the technological advances, the issue of exhaust gas emissions has plagued a diesel engine. This issue has gained a lot of importance since 1990s when IMO, EU, and the EPA came up with the Tier I exhaust gas emission norms for the existing engine in order to reduce the NOx and SOx. Harsher Tier II and Tier III norms were later announced for newer engines. Diesel fuels commonly used in marine engines are a form of residual fuel, also know as Dregs or Heavy Fuel Oil and are essentially the by products of crude oil distillation process used to produce lighter petroleum fuels like marine distillate fuel and gasoline. They are cheaper than marine distillate fuels but are also high in nitrogen, sulfur and ash content. This greatly increases the NOx and SOx in the exhaust gas emission. Ship owners are trapped between the need to use residual fuels, due to cost of the large volume of fuel consumed, in order to keep the operation of their ships to a competitive level on one hand and on the other hand the need to satisfy the stringent pollution norms as established by the pollution control agencies worldwide. Newer marine diesel engines are being designed to meet the Tier II and Tier III norms wherever applicable but the existing diesel engine owners are still operating their engines with the danger of not meeting the applicable pollution norms worldwide. Here we make an effort to look at some of the measure that the existing marine diesel engine owners can take to reduce emissions and achieve at least levels prescribed in Tier I. Proper maintenance and upkeep of the engine components can be effectively used to reduce the exhaust gas emission. We introduced a pilot program on diesel engine performance monitoring in North America about two years ago and it has yielded quite satisfying results for several shipping companies and more and more ship owners are looking at the option of implementing this program on their ships.


2018 ◽  
Vol 29 (4) ◽  
pp. 591-612 ◽  
Author(s):  
Dayong Wu ◽  
Changwei Yuan ◽  
Hongchao Liu

This paper analyzes the decoupling states between CO2 emissions and transport development in China from 1994 to 2012. The results indicate that, at the aggregate level, the Chinese transport sector is far from reaching the decoupling state. Negative decoupling or non-decoupling years account for 72.2% of the study period. At the disaggregated level, the decoupling states between CO2 emissions and eight primary fuels are as follows: raw coal and coke are in the absolute decoupling state; crude oil, gasoline and diesel are in the weak negative state; and the other three types (kerosene, heavy fuel oil, and natural gas) are in the strong negative decoupling state. Policy implications underneath the identified decoupling states are also revealed to help China build a more sustainable transportation system.


Author(s):  
Vikram Muralidharan ◽  
Matthieu Vierling

Power generation in south Asia has witnessed a steep fall due to the shortage of natural gas supplies for power plants and poor water storage in reservoirs for low hydro power generation. Due to the current economic scenario, there is worldwide pressure to secure and make more gas and oil available to support global power needs. With constrained fuel sources and increasing environmental focus, the quest for higher efficiency would be imminent. Natural gas combined cycle plants operate at a very high efficiency, increasing the demand for gas. At the same time, countries may continue to look for alternate fuels such as coal and liquid fuels, including crude and residual oil, to increase energy stability and security. In over the past few decades, the technology for refining crude oil has gone through a significant transformation. With the advanced refining process, there are additional lighter distillates produced from crude that could significantly change the quality of residual oil used for producing heavy fuel. Using poor quality residual fuel in a gas turbine to generate power could have many challenges with regards to availability and efficiency of a gas turbine. The fuel needs to be treated prior to combustion and needs a frequent turbine cleaning to recover the lost performance due to fouling. This paper will discuss GE’s recently developed gas turbine features, including automatic water wash, smart cooldown and model based control (MBC) firing temperature control. These features could significantly increase availability and improve the average performance of heavy fuel oil (HFO). The duration of the gas turbine offline water wash sequence and the rate of output degradation due to fouling can be considerably reduced.


Author(s):  
R K Green ◽  
C C Zavier

The effect of charge stratification on lean mixture combustion in a Ricardo E6 single-cylinder four-stroke reciprocating engine has been investigated. To do this, a commercially available spark plug was modified so that small amounts of pure methane gas could be injected, via the spark electrode, into a lean mixture within the combustion chamber prior to ignition. The effect on engine performance of variations in the methane injection process were analysed. The research has led to the following conclusions: 1. The lean limit of a homogeneous air-fuel mixture is extended by this relatively simple charge stratification process. 2. The effectiveness of charge stratification is most noticeable at lean air-fuel ratios in terms of improved brake specific fuel consumption. 3. Unburnt hydrocarbon emission levels are higher with the stratified charge process when compared to normal homogeneous mixture operation. 4. Carbon monoxide levels with stratified charge combustion are almost the same or a little lower than normal operation at the leanest air-fuel ratios.


2020 ◽  
Vol 8 (4) ◽  
pp. 299 ◽  
Author(s):  
Hulda Winnes ◽  
Erik Fridell ◽  
Jana Moldanová

There is an increase in installations of exhaust gas scrubbers on ships following international regulations on sulphur content in marine fuel from 2020. We have conducted emission measurements on a four-stroke marine engine using low sulphur fuel oil (LSFO) and heavy fuel oil (HFO) at different steady state engine loads. For the HFO the exhaust was probed upstream and downstream of an exhaust gas scrubber. While sulphur dioxide was removed with high efficiency in the scrubber, the measurements of particle emissions indicate lower emissions at the use of LSFO than downstream of the scrubber. The scrubber removes between 32% and 43% of the particle mass from the exhaust at the HFO tests upstream and downstream of the scrubber, but levels equivalent to those in LSFO exhaust are not reached. Decreases in the emissions of polycyclic aromatic hydrocarbons (PAH-16) and particulate matter as black carbon, organic carbon and elemental carbon, over the scrubber were observed for a majority of the trials, although emissions at LSFO use were consistently lower at comparable engine power.


Author(s):  
Antonio Diego-Marin ◽  
Carlos Melendez-Cervantes ◽  
Alejandro Mani-Gonzalez

Two older boilers were burning low grade heavy fuel oil (number 6) and emitting large amounts of unburned carbon particles. Owing to the short life remaining of the units and economic constrains, it was not possible to change to a better fuel or install new burners. To contribute to the solution of this problem, an experimental program was carried out by emulsifying water in the fuel oil. Tests were performed in a scale furnace (0.35MWth) and the emulsions that produced the best results were assessed in the two boilers, 28 and 34 MWe capacity with Y-jet atomizer type. The system to prepare the emulsion was very simple: water was added into the oil before the fuel oil pump, no chemical products were added and a static mixed was used to improve the water size distribution, which 90% ranged from 1 to 9 micron. In the pilot furnace the emulsions were prepared with 5 and 10% water and atomized with compressed air. Particle reductions of 43 and 67% were obtained compared with the net heavy fuel oil. In the boilers, the emulsions were prepared with the same amount of water, and were atomized with saturated steam. In the 28 MWe boiler, a similar particle reduction was obtained to that of the scale furnace. However, in the 34 MWe boiler there was no particle abatement. By using a commercial fluid dynamic computer code, it was found that the combustion air transferred heat to the steam raising its temperature. Thus, in the mixing chamber of the Y-jet atomizers, the steam was superheated and destroyed the water droplets of the emulsion. Compressed air and saturated steam as atomizing medium of the emulsions had similar effect on the unburned particle reduction. However, the effectiveness of the emulsions may be affected by the steam. Care should be taken to avoid the use of steam with a temperature higher than the saturated water temperature.


2020 ◽  
Vol 12 (22) ◽  
pp. 9585
Author(s):  
Yu Yong Ung ◽  
Park Sung Ho ◽  
Jung Dong Ho ◽  
Lee Chang Hee

The International Maritime Organization has strengthened global environmental regulations related to sulfur and nitrogen oxides contained in ship fuel oil since the beginning of 2020. One strategy to comply with the regulations is to fuel ships with liquefied natural gas (LNG) rather than with traditional heavy fuel oil. China and Japan are both developing a business structure for the bunkering of LNG through public–private partnerships to expand their leadership in the field in Northeast Asia and secure a competitive advantage. Compared to China and Japan, Korea has relatively inadequate laws, policy support, and best practices for safe and efficient LNG bunkering for ships. This article provides a comprehensive overview of the LNG bunkering regulation systems in China and Japan and addresses how these systems can be mirrored by Korea to improve the Korean system. It compares the legislative and normative rules of China and Japan regarding the complex global scenario of maritime transportation. The results show that Korea must revise its guidelines and create the advanced institutional framework required for the LNG bunkering market to support an eco-friendly shipping industry and maintain a competitive edge against China and Japan.


Sign in / Sign up

Export Citation Format

Share Document