scholarly journals Cisplatin Conjugated Silver Nanoparticles Enhance Anticancer Activity in Breast Cancer Cells

Author(s):  
Sayuri Gounden ◽  
Moganavelli Singh
2017 ◽  
Vol 11 (8) ◽  
pp. 965-972 ◽  
Author(s):  
Ramasamy Subbaiya ◽  
Muthupandian Saravanan ◽  
Andavar Raja Priya ◽  
Konathala Ravi Shankar ◽  
Masilamani Selvam ◽  
...  

2019 ◽  
Vol 1317 ◽  
pp. 012106
Author(s):  
Siti Syarifah ◽  
Tri Widyawati ◽  
Dwi Rita Anggraini ◽  
Arlinda Sari Wahyuni ◽  
Mutiara Indah Sari

Author(s):  
Sampath K. Banupriya ◽  
Krishnamoorthy Kavithaa ◽  
Arumugam Poornima ◽  
Sundaravadivelu Sumathi

Background: In the current era, development of molecular techniques involves nanotechniques and the synthesis of nanoparticles is considered as the preferred field in nanotechnology. Objective: The aim of the present work is to analyze the anticancer activity of the thymoquinone conjugated ZnO nanoparticles and to understand its mechanism of action in triple negative breast cancer cell line MDA-MB-231. Methods: Zinc Oxide (ZnO) nanoparticles have extensive applications and it was synthesized using a chemical precipitation method. Thymoquinone (TQ) is the major bioactive component of the seeds of Nigella sativa. Synthesized nanoparticles were characterized using various spectroscopic techniques. Thymoquinone coated nanoparticles were checked for its efficiency. The cytotoxicity of ZnO, TQ and TQ conjugated ZnO nanoparticles against MDA-MB-231. Colony forming and cell migration assay were performed to measure the proliferative competence of the breast cancer cells on exposure to nanoparticles. The mechanism of apoptosis was probed by assessing MMP, interplay between ER stress and ROS. Results: The results of the characterization techniques confirmed the particles synthesized were ZnO and TQ-ZnO nanoparticles. pH dependent release of the compound was observed. Anti-proliferative effect that impairs the formation of colony was found to be enhanced in cells exposed to combined treatment with the nanoconjugate. Conclusion: Hence, the TQ conjugated ZnO nanoparticles can act as an efficient carrier for drug delivery at the target site in TNBC cells.


2020 ◽  
Vol 9 ◽  
pp. 1812
Author(s):  
Solmaz Rahmani Barouji ◽  
Arman Shahabi ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

Background: Mummy (Iranian pure shilajit) is a remedy with possessing anti-inflammatory, antioxidant and anticancer activities. This study aimed to examine mummy effects on epithelial-mesenchymal transition (EMT) and invasiveness of MCF-7 and MDA-MB-231 breast cancer (BC) cell lines with underlying its mechanism. Materials and Methods: The dose-dependent inhibitory effect of the mummy on cell proliferation in vitro was determined using the MTT assay.  Flow cytometry and 4’,6-diamidino-2-phenylindole dihydrochloride staining were respectively used for quantitative and qualitative analysis of cellular apoptosis, and gene expression analysis was conducted using real-time PCR. Results: MDA-MB-231 showed more sensitivity than the MCF-7 cell line to the anticancer activity of mummy, while mummy did not exhibit significant cell cytotoxicity against human normal cells (MCF-10A). The gene expression profile demonstrated a significant decrease in TGF-β1, TGF-βR1, TWIST1, NOTCH1, CTNNB1, SRC along with an increase in E-cadherin mRNA levels in mummy treated cells compared to the untreated control group (P≤0.05). Conclusion: Mummy triggers inhibition of EMT and metastasis in breast cancer cells mainly through the downregulation of TGFβ1 activity, and more studies required to find its specific anticancer activity with details. [GMJ.2020;9:e1812]


2018 ◽  
Vol 19 (12) ◽  
pp. 3501-3509 ◽  
Author(s):  
Roopesh Krishnankutty ◽  
Ahmad Iskandarani ◽  
Lubna Therachiyil ◽  
Shahab Uddin ◽  
Fouad Azizi ◽  
...  

2021 ◽  
Author(s):  
Romina Delalat ◽  
Seyed Ataollah Sadat Shandiz ◽  
Bahareh Pakpour

Abstract The present research was done to investigate the anticancer properties of silver nanoparticles (AgNPs) fabricated using bioactive extract of Onopordum acanthium L. (AgNPs-OAL) against breast cancer cell MDA_MB231 in vitro. The determination studies of AgNPs-OAL were confirmed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) analysis. Interestingly, FESEM image observed the spherical shape of AgNPs-OAL with the range of 1–100 nm. As AgNP-OAL exhibited significant cytotoxicity properties on breast cancer MDA_MB231 cells with IC50 values of 66.04 μg/mL, while lowing toxicity toward normal human embryonic kidney 293 (HEK293) cells with IC50 values of 101.04 μg/mL was evaluated. Further, up-regulation of apoptotic Bax and CAD genes expressions were confirmed by quantitative real-time reverse transcription-PCR (qRT-PCR) technique results. Moreover, enhanced cell cycle population (sub-G1), annexin V/PI staining, acridine orange and ethidium bromide (AO/EB) staining, Hoescht 33258 dye, and generation of reactive oxygen species (ROS) observed in AgNP-OAL-treated MDA_MB231 cancer cells. The green-synthesized AgNP-OAL has promising anticancer efficiency that can trigger apoptosis pathway in the MDA_MB231 breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document