scholarly journals Study of surface energy of SiO2 and TiO2 on charge carrier mobility of rubrene organic field effect transistor

Author(s):  
Anupama Shivamurthy ◽  
Prashanth G R ◽  
Renukappa N M ◽  
Sundara Rajan J ◽  
Parameshwara S
2015 ◽  
Vol 7 (19) ◽  
pp. 10169-10177 ◽  
Author(s):  
Priya Maheshwari ◽  
Saurabh Mukherjee ◽  
Debarati Bhattacharya ◽  
Shashwati Sen ◽  
Raj Bahadur Tokas ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Chih-Ting Lin ◽  
Chun-Hao Hsu ◽  
Chang-Hung Lee ◽  
Wen-Jung Wu

Poly(3-hexylthiophene), P3HT, has been widely used in organic electronics as a semiconductor material. It suffers from the low carrier mobility characteristics. This limits P3HT to be employed in applications. Therefore, the blending semiconductor material, carbon nanoparticle (CNP), and P3HT, are developed and examined by inkjet-printing organic field-effect transistor technology in this work. The effective carrier mobility of fabricated OFETs can be enhanced by 8 folds with adding CNP and using O2plasma treatment. At the same time, the transconductance of fabricated OFETs is also raised by 5 folds. Based on the observations of SEM, XRD, and FTIR, these improvements are contributed to the local field induced by the formation of CNP/P3HT complexes. This observation presents an insight of the development in organic semiconductor materials. Moreover, this work also offers a low-cost and effective semiconductor material for inkjet-printing technology in the development of organic electronics.


2011 ◽  
Vol 99 (7) ◽  
pp. 073306 ◽  
Author(s):  
Hsiu-Chuang Chang ◽  
P. Paul Ruden ◽  
Yan Liang ◽  
C. Daniel Frisbie

2007 ◽  
Vol 555 ◽  
pp. 125-130
Author(s):  
Rajko M. Šašić ◽  
P.M. Lukić

Carriers mobility model of olygomer and polymer semiconductor based OFET (Organic Field Effect Transistor) structures is presented in this paper. Starting from the conduction mechanism in the mentioned organic materials, a carrier mobility dependence on temperature, electric field and trap density μ(T,E,NT) was investigated, inspiring directly the current-voltage I(V) model of OFET structures. Subsequent simulations were also performed and the obtained results compared with the data available in the literature.


2021 ◽  
Vol 8 (5) ◽  
pp. 823-835
Author(s):  
Thomas Debesay ◽  
◽  
Sam-Shajing Sun ◽  
Messaoud Bahoura ◽  
◽  
...  

<abstract> <p>A dual doped regio-regular poly(3-hexylthiophene-2, 5-diyl) (P3HT) was investigated to develop a multi-functional organic field effect transistor (OFET). OFETs based on a pristine P3HT and a dual doped P3HT (P3HT:PCBM:I<sub>2</sub> blend) were fabricated to study the impact of doping on the electrical properties of the samples, and to examine the mechanism through which it amplified the output performance of the doped OFETs. A series of experimental techniques such as device electrical characterization, active layer surface analysis, and photon absorptivity measurements were conducted to quantitatively characterize the principal parameters that are susceptible to change as a result of doping. Topographic mapping revealed the expected doping-induced improvements in surface morphology, which could be associated with the ability of iodine to improve interdigitation between adjacent P3HT chains. Similarly, absorption spectra showed a 3 nm red-shift of the light absorbance spectrum of the doped samples compared to the undoped samples. The electrical conductivity of the samples was also examined at various conditions of temperature and light intensity, and the values obtained from the doped sample were approximately one order of magnitude higher compared to those of the undoped sample at room temperature, which explains the reason behind the higher output current drawn from the doped device compared to that of the undoped OFET. The explanation for this is two-fold, both PCBM and iodine promote the generation of free charge carriers, which increases the electrical conductivity of the active layer; and in addition to that, the improved P3HT main-chain interdigitation brought about by the introduction of iodine results in an increase in charge-carrier mobility, which also results in higher electrical conductivity. The findings of this study offers valuable information that could be instrumental in further advancing the future organic semiconductors based studies.</p> </abstract>


Sign in / Sign up

Export Citation Format

Share Document