Feedback control of plasma electron density and ion energy in an inductively coupled plasma etcher

2009 ◽  
Vol 27 (1) ◽  
pp. 157-164 ◽  
Author(s):  
Chaung Lin ◽  
Keh-Chyang Leou ◽  
Hong-Min Huang ◽  
Cheng-Hung Hsieh
2018 ◽  
Vol 65 (2) ◽  
pp. 771-776 ◽  
Author(s):  
Wei Zheng ◽  
Feiran Hu ◽  
Ming Zhang ◽  
Tao Yuan ◽  
Xueqing Zhao ◽  
...  

1998 ◽  
Vol 510 ◽  
Author(s):  
T. Maeda ◽  
J. W. Lee ◽  
C. R. Abernathy ◽  
S. J. Pearton ◽  
F. Ren ◽  
...  

AbstractThe effects of Inductively Coupled Plasma (ICP) and Electron Cyclotron Resonance (ECR) H2 plasmas on GaAs metal semiconductor field effect transistors (MESFETs), high electron mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs) have been measured as a function of ion flux, ion energy and process pressure. The chemical effects of hydrogenation have been compared to direct physical bombardment by Ar plasmas under the same conditions. Si dopant passivation in MESFETs and HEMTs and C base-dopant passivation in HBTs produces much larger changes in sheet resistance, breakdown voltage and device gain or transconductance than Ar ion bombardment and suggests that H2-containing plasma chemistries (CH4/H2 for semiconductor etching, SiH4 for dielectric deposition, CHF3 for dielectric etching) should be avoided, or at least the exposure of the surface minimized. In some cases the device degradation is less for higher source power conditions, due to the suppression of cathode dc self-bias and hence ion energy.


1996 ◽  
Vol 143 (4) ◽  
pp. 1375-1383 ◽  
Author(s):  
Naoki Yamada ◽  
Peter L. G. Ventzek ◽  
Y. Sakai ◽  
H. Tagashira ◽  
K. Kitamori

2021 ◽  
Vol 92 (9) ◽  
pp. 093507
Author(s):  
Shuangbao Shu ◽  
Jin Lai ◽  
Zhiqiang Chen ◽  
Yong Wang ◽  
Yuzhong Zhang ◽  
...  

2018 ◽  
Vol 37 (6) ◽  
pp. 545-550
Author(s):  
Mikhail Isupov ◽  
Vadim Pinaev ◽  
Daria Mul ◽  
Natalia Belousova

AbstractAn experimental investigation of plasma-assisted nitriding of austenitic stainless steel AISI 321 in a low-pressure (7 Pa), low-frequency (50–100 kHz) nitrogen inductively coupled plasma enhanced with ferromagnetic cores has been performed at the temperatures of 470–625 °C, sample biases of ‒500–‒750 V, current densities on the sample surface of 1.2–3.3 mA/cm2 and nitriding times of 20 and 60 min. It is found that even the short (20 min) ion-plasma treatment results in the formation of nitrided layers with the thickness of up to 40 μm and microhardness of up to 9 GPa.The high speed of nitriding can be explained as a result of the joint action of high ion flux density and high ion energy on the sample surface.


2021 ◽  
pp. 61-64
Author(s):  
M.S. Ladygina ◽  
Yu.V. Petrov ◽  
D.V. Yeliseev ◽  
V.A. Makhlai ◽  
N.V. Kulik ◽  
...  

Present experimental studies are aimed at analysis of hydrogen plasma stream parameters in various working regimes of QSPA-M operation. Temporal distributions of plasma electron density are reconstructed with optical emission spectroscopy. The magnetic field influence on plasma streams parameters is analyzed. It is shown that in regimes with additional magnetic field the plasma electron density increases by an order of magnitude in comparison with a density value without magnetic field. The plasma velocity and energy density parameters as well as their temporal behaviors were estimatedin different operating regimes of QSPA-M facility. Features of plasma visible radiation were analyzed. This information is important for QSPA-M applications in experiments on interaction of powerful plasma streams with material surfaces.


2015 ◽  
Vol 42 (1) ◽  
pp. 0102008
Author(s):  
雷岚 Lei Lan ◽  
曹娜 Cao Na ◽  
曹亮 Cao Liang ◽  
徐青 Xu Qing ◽  
韩长材 Han Changcai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document