Automated tuning of an electron cyclotron resonance cavity to a microwave power source

1997 ◽  
Vol 15 (5) ◽  
pp. 2717-2727
Author(s):  
C. K. Hanish ◽  
J. W. Grizzle
1991 ◽  
Vol 235 ◽  
Author(s):  
K. T. Sung ◽  
S. W. Pang

ABSTRACTSilicon was oxidized at low temperature with an oxygen plasma generated by an electron cyclotron resonance (ECR) source. The ECR source utilized a multicusp magnetic field formed by permanent magnets. Microwave power at 2.45 GHz was applied to the source and if power at 13.56 MHz was applied to the sample stage. Si oxidation was studied as a function of source distance, pressure, microwave power, and rf power. The oxide thickness increases with microwave and rf power but decreases with source distance. The oxidation rate increases with pressure up to 12 mTorr, men decreases at higher pressure. The relative emission intensities in the plasma monitored using optical emission spectroscopy showed similar dependence on the source distance and microwave power. Oxidation temperature was estimated to be <100°C. Using ellipsometry and X-ray photoelectron spectroscopy, the oxidized films were found to be close to that of thermal oxide with refractive index at 1.45 and oxygen to silicon ratio of 2. From the current-voltage and capacitance-voltage measurements, the breakdown fields of these oxide films were 6.3 MV/cm and the fixed charge densities were 7×1010 cm−2.


1993 ◽  
Vol 324 ◽  
Author(s):  
O.J. Glembocki ◽  
J.A. Tuchman ◽  
K.K. Ko ◽  
S.W. Pang ◽  
A. Giordana ◽  
...  

AbstractPhotoreflectance has been used to characterize the etch-induced damage in GaAs processed in an Ar/Cl2 plasma generated by an electron-cyclotron resonance (ECR) source. We show that the damage is localized to the surface and that it is most influenced by the RF power, with little effect from the microwave power. The Fermi-level is observed to be unchanged in n-GaAs and remains near midgap, while for p-GaAs, the Fermi level shifts from near the valence band to midgap. Etch-induced anisite defects are proposed as a possible source of the damage.


Sign in / Sign up

Export Citation Format

Share Document