Emission properties of thermally activated delayed fluorescence emitters: analysis based on a four-level model considering a higher triplet excited state

2018 ◽  
Vol 8 (03) ◽  
pp. 1 ◽  
Author(s):  
Takashi Kobayashi ◽  
Akitsugu Niwa ◽  
Shota Haseyama ◽  
Kensho Takaki ◽  
Takashi Nagase ◽  
...  
2021 ◽  
Author(s):  
Takumi Hosono ◽  
Nicolas Oliveira Decarli ◽  
Paola Zimmermann Crocomo ◽  
Tsuyoshi Goya ◽  
Leonardo Evaristo de Sousa ◽  
...  

Exploring design principle for switching thermally activated dealyed fluorescecne (TADF) and room temperature phosphorescence (RTP) is a fundamentally imporant research in developing triplet-mediated photofunctional organic materials. Herein systematic studies on the regioisomeric and substituents effects in a twisted donor–acceptor–donor (D–A–D) scaffold (A = dibenzo[a,j]phenazine; D = dihydrophenazasiline) on the fate of the excited state have been performed. The study revealed that the regiosiomerism clearly affects the emission behavior of the D–A–D compounds. Distinct difference in TADF, dual TADF & RTP, and dual RTP were observed, depending on the host used. Furthermore, OLED organic light-emitting diodes (OLEDs) fabricated with the developed emitters achieved high external quantum yields for RTP-based OLEDS up to 7.4%.


2021 ◽  
Vol 57 (82) ◽  
pp. 10675-10688
Author(s):  
Alexander M. Polgar ◽  
Zachary M. Hudson

The use of thermally activated delayed fluorescence molecules as photosensitizers is covered with emphasis on strategies employed to control their excited state behaviour to suit a particular application.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3934 ◽  
Author(s):  
Sarah Keller ◽  
Matthias Bantle ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

Heteroleptic [Cu(BIPHEP)(N^N)][PF6] complexes (BIPHEP = 1,1′-biphenyl-2,2′-diylbis(diphenylphosphane)), in which N^N is 2,2′-bipyridine (bpy), 6-methyl-2,2′-bipyridine (6-Mebpy), 6-ethyl-2,2′-bipyridine (6-Etbpy), or 5,5′-dimethyl-2,2′-bipyridine (5,5′-Me2bpy), have been synthesized and characterized using multinuclear NMR spectroscopies and electrospray ionization mass spectrometry. The single crystal structures of [Cu(BIPHEP)(bpy)][PF6]∙CH2Cl2, [Cu(BIPHEP)(5,5′-Me2bpy)][PF6]∙CH2Cl2, [Cu(BIPHEP)(6-Mebpy)][PF6]∙Et2O∙0.5H2O and [Cu(BIPHEP)(6-Etbpy)][PF6] confirm distorted tetrahedral {Cu(P^P)(N^N)} coordination environments. Each compound shows a quasi-reversible Cu+/Cu2+ process. In deaerated solution, the compounds are weak emitters. Powdered samples are yellow emitters (λemmax in the range 558–583 nm) and [Cu(BIPHEP)(5,5′-Me2bpy)][PF6] exhibits the highest photoluminescence quantum yield (PLQY = 14%). On cooling to 77 K (frozen 2-methyloxolane), the emission maxima are red-shifted and the excited state lifetimes increase from τ1/2 < 8 μs, to τ1/2 values of up to 53 μs, consistent with the compounds with N^N = 6-Mebpy, 6-Etbpy and 5,5′-Me2bpy exhibiting thermally activated delayed fluorescence (TADF).


2020 ◽  
Vol 8 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Guanyu Jiang ◽  
Feiyan Li ◽  
Jianzhong Fan ◽  
Yuzhi Song ◽  
Chuan-Kui Wang ◽  
...  

Excited-state intramolecular proton transfer (ESIPT) and thermally activated delayed fluorescence (TADF) mechanisms in solid phase is revealed theoretically.


2017 ◽  
Vol 5 (33) ◽  
pp. 8390-8399 ◽  
Author(s):  
Jianzhong Fan ◽  
Lili Lin ◽  
Chuan-Kui Wang

Investigation about the excited state properties to reveal the AIE and TADF mechanisms using a QM/MM method.


2020 ◽  
Author(s):  
Robert Pollice ◽  
Pascal Friederich ◽  
Cyrille Lavigne ◽  
Gabriel dos Passos Gomes ◽  
Alan Aspuru-Guzik

One of the recent proposals for the design of state-of-the-art emissive materials for organic light emitting diodes (OLEDs) is the principle of thermally activated delayed fluorescence (TADF). The underlying idea is to enable facile thermal upconversion of excited state triplets, which are generated upon electron-hole recombination, to excited state singlets by minimizing the corresponding energy difference resulting in devices with up to 100% internal quantum efficiencies (IQEs). Ideal emissive materials potentially surpassing TADF emitters should have both negative singlet-triplet gaps and appreciable fluorescence rates to maximize reverse intersystem crossing (rISC) rates from excited triplets to singlets while minimizing ISC rates and triplet state occupation leading to long-term operational stability. However, molecules with negative singlet-triplet gaps are extremely rare and, to the best of our knowledge, not emissive. In this work, based on computational studies, we describe the first molecules with negative singlet-triplet gaps and considerable fluorescence rates and show that they are more common than hypothesized previously.


Sign in / Sign up

Export Citation Format

Share Document