Analyzing the impact of red-edge band on land use land cover classification using multispectral RapidEye imagery and machine learning techniques

2019 ◽  
Vol 13 (04) ◽  
pp. 1
Author(s):  
Rashmi Saini ◽  
Sanjay K. Ghosh
2020 ◽  
Vol 13 (1-2) ◽  
pp. 43-52
Author(s):  
Boudewijn van Leeuwen ◽  
Zalán Tobak ◽  
Ferenc Kovács

AbstractClassification of multispectral optical satellite data using machine learning techniques to derive land use/land cover thematic data is important for many applications. Comparing the latest algorithms, our research aims to determine the best option to classify land use/land cover with special focus on temporary inundated land in a flat area in the south of Hungary. These inundations disrupt agricultural practices and can cause large financial loss. Sentinel 2 data with a high temporal and medium spatial resolution is classified using open source implementations of a random forest, support vector machine and an artificial neural network. Each classification model is applied to the same data set and the results are compared qualitatively and quantitatively. The accuracy of the results is high for all methods and does not show large overall differences. A quantitative spatial comparison demonstrates that the neural network gives the best results, but that all models are strongly influenced by atmospheric disturbances in the image.


2019 ◽  
Vol 11 (13) ◽  
pp. 1600 ◽  
Author(s):  
Flávio F. Camargo ◽  
Edson E. Sano ◽  
Cláudia M. Almeida ◽  
José C. Mura ◽  
Tati Almeida

This study proposes a workflow for land use and land cover (LULC) classification of Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) images of the Brazilian tropical savanna (Cerrado) biome. The following LULC classes were considered: forestlands; shrublands; grasslands; reforestations; croplands; pasturelands; bare soils/straws; urban areas; and water reservoirs. The proposed approach combines polarimetric attributes, image segmentation, and machine-learning procedures. A set of 125 attributes was generated using polarimetric ALOS-2/PALSAR-2 images, including the van Zyl, Freeman–Durden, Yamaguchi, and Cloude–Pottier target decomposition components, incoherent polarimetric parameters (biomass indices and polarization ratios), and HH-, HV-, VH-, and VV-polarized amplitude images. These attributes were classified using the Naive Bayes (NB), DT J48 (DT = decision tree), Random Forest (RF), Multilayer Perceptron (MLP), and Support Vector Machine (SVM) algorithms. The RF, MLP, and SVM classifiers presented the most accurate performances. NB and DT J48 classifiers showed a lower performance in relation to the RF, MLP, and SVM. The DT J48 classifier was the most suitable algorithm for discriminating urban areas and natural vegetation cover. The proposed workflow can be replicated for other SAR images with different acquisition modes or for other types of vegetation domains.


2020 ◽  
Vol 12 (9) ◽  
pp. 1422 ◽  
Author(s):  
Romulus Costache ◽  
Quoc Bao Pham ◽  
Ema Corodescu-Roșca ◽  
Cătălin Cîmpianu ◽  
Haoyuan Hong ◽  
...  

The aim of the present study was to explore the correlation between the land-use/land cover change and the flash-flood potential changes in Zăbala catchment (Romania) between 1989 and 2019. In this regard, the efficiency of GIS, remote sensing and machine learning techniques in detecting spatial patterns of the relationship between the two variables was tested. The paper elaborated upon an answer to the increase in flash flooding frequency across the study area and across the earth due to the occurred land-use/land-cover changes, as well as due to the present climate change, which determined the multiplication of extreme meteorological phenomena. In order to reach the above-mentioned purpose, two land-uses/land-covers (for 1989 and 2019) were obtained using Landsat image processing and were included in a relative evolution indicator (total relative difference-synthetic dynamic land-use index), aggregated at a grid-cell level of 1 km2. The assessment of runoff potential was made with a multilayer perceptron (MLP) neural network, which was trained for 1989 and 2019 with the help of 10 flash-flood predictors, 127 flash-flood locations, and 127 non-flash-flood locations. For the year 1989, the high and very high surface runoff potential covered around 34% of the study area, while for 2019, the same values accounted for approximately 46%. The MLP models performed very well, the area under curve (AUC) values being higher than 0.837. Finally, the land-use/land-cover change indicator, as well as the relative evolution of the flash flood potential index, was included in a geographically weighted regression (GWR). The results of the GWR highlights that high values of the Pearson coefficient (r) occupied around 17.4% of the study area. Therefore, in these areas of the Zăbala river catchment, the land-use/land-cover changes were highly correlated with the changes that occurred in flash-flood potential.


Sign in / Sign up

Export Citation Format

Share Document