Remote sensing target detection in a harbor area based on an arbitrary-oriented convolutional neural network

2021 ◽  
Vol 15 (03) ◽  
Author(s):  
Mingyuan Sun ◽  
Haochun Zhang ◽  
Ziliang Huang ◽  
Yiyi Li
PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259283
Author(s):  
Wentong Wu ◽  
Han Liu ◽  
Lingling Li ◽  
Yilin Long ◽  
Xiaodong Wang ◽  
...  

This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields.


2021 ◽  
Author(s):  
Chenshuai Bai ◽  
Kaijun Wu ◽  
Dicong Wang ◽  
Hong Li ◽  
Mingjun Yan ◽  
...  

Abstract Because the detection effect of EfficientNet-YOLOv3 target detection algorithm is not very good, this paper proposes a small target detection research based on dynamic convolution neural network. Firstly, the dynamic convolutional neural network is introduced to replace the traditional convolutional neural network, which makes the algorithm model more robust; Secondly, in the training process, the optimization parameters are continuously adjusted to further strengthen the model structure; Finally, in order to prevent over fitting, the Learning Rate and Batch Size parameters are modified during the training process. remote sensing image The results of the proposed algorithm on RSOD remote sensing image data sets show that compared with the original EfficientNet-YOLOv3 algorithm, the (Average Precision, AP) value is increased by 1.93% and the (Log Average Miss Rate ,LAMR) value is reduced by 0.0500; The results of the proposed algorithm on TGRS-HRRSD remote sensing image data set show that compared with the original EfficientNet-YOLOv3 algorithm, the mAP value is increased by 0.07% and the mLAMR value is reduced by 0.0007.


2019 ◽  
Vol 11 (6) ◽  
pp. 631 ◽  
Author(s):  
Shaoming Zhang ◽  
Ruize Wu ◽  
Kunyuan Xu ◽  
Jianmei Wang ◽  
Weiwei Sun

Offshore and inland river ship detection has been studied on both synthetic aperture radar (SAR) and optical remote sensing imagery. However, the classic ship detection methods based on SAR images can cause a high false alarm ratio and be influenced by the sea surface model, especially on inland rivers and in offshore areas. The classic detection methods based on optical images do not perform well on small and gathering ships. This paper adopts the idea of deep networks and presents a fast regional-based convolutional neural network (R-CNN) method to detect ships from high-resolution remote sensing imagery. First, we choose GaoFen-2 optical remote sensing images with a resolution of 1 m and preprocess the images with a support vector machine (SVM) to divide the large detection area into small regions of interest (ROI) that may contain ships. Then, we apply ship detection algorithms based on a region-based convolutional neural network (R-CNN) on ROI images. To improve the detection result of small and gathering ships, we adopt an effective target detection framework, Faster-RCNN, and improve the structure of its original convolutional neural network (CNN), VGG16, by using multiresolution convolutional features and performing ROI pooling on a larger feature map in a region proposal network (RPN). Finally, we compare the most effective classic ship detection method, the deformable part model (DPM), another two widely used target detection frameworks, the single shot multibox detector (SSD) and YOLOv2, the original VGG16-based Faster-RCNN, and our improved Faster-RCNN. Experimental results show that our improved Faster-RCNN method achieves a higher recall and accuracy for small ships and gathering ships. Therefore, it provides a very effective method for offshore and inland river ship detection based on high-resolution remote sensing imagery.


Sign in / Sign up

Export Citation Format

Share Document