Dielectric permittivity of biological tissues in the microwave frequency range

1994 ◽  
Author(s):  
J. Behari ◽  
Z. C. Alex ◽  
Zahid H. Zaidi
2021 ◽  
Vol 9 ◽  
Author(s):  
Jerdvisanop Chakarothai ◽  
Kanako Wake ◽  
Katsumi Fujii

In this paper, human exposures to ultra-wideband (UWB) electromagnetic (EM) pulses in the microwave region are assessed using a frequency-dependent FDTD scheme previously proposed by the authors. Complex permittivity functions of all biological tissues used in the numerical analyses are accurately expressed by the four-term Cole–Cole model. In our method, we apply the fast inverse Laplace transform to determine the time-domain impulse response, utilize the Prony method to find the Z-domain representation, and extract residues and poles for use in the FDTD formulation. Update equations for the electric field are then derived via the Z-transformation. Firstly, we perform reflection and transmission analyses of a multilayer composed of six different biological tissues and then confirm the validity of the proposed method by comparison with analytical results. Finally, numerical dosimetry of various human bodies exposed to EM pulses from the front in the microwave frequency range is performed, and the specific energy absorption is evaluated and compared with that prescribed in international guidelines.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4143 ◽  
Author(s):  
Jimena Castro-Gutiérrez ◽  
Edita Palaimiene ◽  
Jan Macutkevic ◽  
Juras Banys ◽  
Polina Kuzhir ◽  
...  

The electromagnetic properties of various carbon gels, produced with different bulk densities, were investigated in a wide frequency range (20 Hz–36 GHz). The values of dielectric permittivity and electrical conductivity at 129 Hz were found to be very high, i.e., more than 105 and close to 100 S/m, respectively. Both strongly decreased with frequency but remained high in the microwave frequency range (close to 10 and about 0.1 S/m, respectively, at 30 GHz). Moreover, the dielectric permittivity and the electrical conductivity strongly increased with the bulk density of the materials, according to power laws at low frequency. However, the maximum of microwave absorption was observed at lower densities. The DC conductivity slightly decreased on cooling, according to the Arrhenius law. The lower activation energies are typical of carbon gels presenting lower DC electrical conductivities, due to a higher number of defects. High and thermally stable electromagnetic properties of carbon gels, together with other unique properties of these materials, such as lightness and chemical inertness, open possibilities for producing new electromagnetic coatings.


1994 ◽  
Vol 158 (1) ◽  
pp. 87-92 ◽  
Author(s):  
S. C. Mathur ◽  
D. C. Dube ◽  
D. S. Rawat ◽  
A. S. Bhalla

2004 ◽  
Vol 42 (5) ◽  
pp. 383-385 ◽  
Author(s):  
Asier Ibáñez Loinaz ◽  
Carlos del Río Bocio

Sign in / Sign up

Export Citation Format

Share Document