Feasibility study of shape control with zero applied voltage utilizing hysteresis in strain-electric field relationship of piezoelectric ceramics

Author(s):  
T. Ikeda ◽  
T. Takahashi
2011 ◽  
Vol 170 (1-2) ◽  
pp. 164-171 ◽  
Author(s):  
P.-J. Cottinet ◽  
C. Souders ◽  
D. Labrador ◽  
S. Porter ◽  
Z. Liang ◽  
...  

2021 ◽  
Author(s):  
Kai Liu ◽  
Jiaming Hu ◽  
Yusheng Shi ◽  
Chenyang Zhou ◽  
Yunfei Sun ◽  
...  

Abstract To improve electrical properties of BaTiO3 piezoelectric ceramics fabricated by 3D printing, effects of particle sizes was investigated on rheological and curing properties of ceramic slurries, electrical properties of BaTiO3 fabricated by Digital Light Processing 3D printing method. It was found that the curing ability of ceramic slurries decreased first and then increased with the increase of particle size from 136 nm to 1486 nm, while the viscosity of the slurries kept decreasing. When the particle size in a range of submicron, the grain size of sintered ceramics decreased from 13.27 μm to 6.84 μm as particle size increasing. Immediately, the relative density, piezoelectric constant, relative permittivity and remanent polarization of sintered ceramics were measured and it turns out to reach 95.32%, 161.4 pC/N, 1512 and 7.59 uC/cm2 respectively while using the BaTiO3 powder with particle sizes of 993 nm. Finally, a cellular structural BaTiO3 ceramics was fabricated by using optimized powder and process parameters and packaged as a piezoelectric sensor, showing a good function of force-electricity conversion. These results demonstrated the feasibility of fabricating high-quality functional ceramics with designed geometry by Digital Light Processing.


Author(s):  
А.А. Андронов ◽  
В.И. Позднякова

Abstract We interpret the recent observations of Otsuji’s team (Sendai) on switching from absorption to amplification at a temperature of T = 300 K during the passage of terahertz radiation through hexagonal boron nitride–graphene sandwiches with multiple gates on the surface with an increase in the electric field in graphene. It is shown that these effects are related to dispersion and negative conductivity near the transit-time frequency of electrons in momentum space under streaming (anisotropic distribution) in graphene in a strong electric field. On the basis of these data, a universal tunable terahertz source is proposed, which has the form of a graphene-containing sandwich with a high-resistance silicon wafer (a cavity) with an applied voltage. This terahertz cavity is a complete analog of the microwave generator implemented on an InP chip by Vorobev’s team (St. Petersburg).


Sign in / Sign up

Export Citation Format

Share Document