Observing system simulation experiments to assess the potential impact of proposed satellite instruments on hurricane prediction

Author(s):  
Robert Atlas ◽  
Thomas S. Pagano
2015 ◽  
Vol 49 (6) ◽  
pp. 140-148 ◽  
Author(s):  
Robert Atlas ◽  
Lisa Bucci ◽  
Bachir Annane ◽  
Ross Hoffman ◽  
Shirley Murillo

AbstractObserving System Simulation Experiments (OSSEs) are an important tool for evaluating the potential impact of new or proposed observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. Extensive OSSEs have been conducted at the National Aeronautical and Space Administration (NASA) Goddard Space Flight Center (GSFC) and the National Oceanic and Atmospheric Administration (NOAA) Atlantic Oceanographic and Meteorological Laboratory (AOML) over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch; evaluated trade-offs in orbits, coverage, and accuracy for space-based wind lidars; and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. This paper summarizes early applications of global OSSEs to hurricane track forecasting and new experiments using both global and regional models. These latter experiments are aimed at assessing potential impact on hurricane track and intensity prediction over the oceans and at landfall.


2015 ◽  
Vol 32 (9) ◽  
pp. 1593-1613 ◽  
Author(s):  
Robert Atlas ◽  
Ross N. Hoffman ◽  
Zaizhong Ma ◽  
G. David Emmitt ◽  
Sidney A. Wood ◽  
...  

AbstractThe potential impact of Doppler wind lidar (DWL) observations from a proposed optical autocovariance wind lidar (OAWL) instrument is quantified in observing system simulation experiments (OSSEs). The OAWL design would provide profiles of useful wind vectors along a ground track to the left of the International Space Station (ISS), which is in a 51.6° inclination low-Earth orbit (LEO). These observations are simulated realistically, accounting for cloud and aerosol distributions inferred from the OSSE nature runs (NRs), and measurement and sampling error sources. The impact of the simulated observations is determined in both global and regional OSSE frameworks. The global OSSE uses the ECMWF T511 NR and the NCEP operational Global Data Assimilation System at T382 resolution. The regional OSSE uses an embedded hurricane NR and the NCEP operational HWRF data assimilation system with outer and inner domains of 9- and 3-km resolution, respectively.The global OSSE results show improved analyses and forecasts of tropical winds and extratropical geopotential heights. The tropical wind RMSEs are significantly reduced in the analyses and in short-term forecasts. The tropical wind improvement decays as the forecasts lengthen. The regional OSSEs are limited but show some improvements in hurricane track and intensity forecasts.


2018 ◽  
Vol 146 (1) ◽  
pp. 175-198 ◽  
Author(s):  
Rong Kong ◽  
Ming Xue ◽  
Chengsi Liu

Abstract A hybrid ensemble–3DVar (En3DVar) system is developed and compared with 3DVar, EnKF, “deterministic forecast” EnKF (DfEnKF), and pure En3DVar for assimilating radar data through perfect-model observing system simulation experiments (OSSEs). DfEnKF uses a deterministic forecast as the background and is therefore parallel to pure En3DVar. Different results are found between DfEnKF and pure En3DVar: 1) the serial versus global nature and 2) the variational minimization versus direct filter updating nature of the two algorithms are identified as the main causes for the differences. For 3DVar (EnKF/DfEnKF and En3DVar), optimal decorrelation scales (localization radii) for static (ensemble) background error covariances are obtained and used in hybrid En3DVar. The sensitivity of hybrid En3DVar to covariance weights and ensemble size is examined. On average, when ensemble size is 20 or larger, a 5%–10% static covariance gives the best results, while for smaller ensembles, more static covariance is beneficial. Using an ensemble size of 40, EnKF and DfEnKF perform similarly, and both are better than pure and hybrid En3DVar overall. Using 5% static error covariance, hybrid En3DVar outperforms pure En3DVar for most state variables but underperforms for hydrometeor variables, and the improvement (degradation) is most notable for water vapor mixing ratio qυ (snow mixing ratio qs). Overall, EnKF/DfEnKF performs the best, 3DVar performs the worst, and static covariance only helps slightly via hybrid En3DVar.


Sign in / Sign up

Export Citation Format

Share Document