scholarly journals Development of a Hybrid En3DVar Data Assimilation System and Comparisons with 3DVar and EnKF for Radar Data Assimilation with Observing System Simulation Experiments

2018 ◽  
Vol 146 (1) ◽  
pp. 175-198 ◽  
Author(s):  
Rong Kong ◽  
Ming Xue ◽  
Chengsi Liu

Abstract A hybrid ensemble–3DVar (En3DVar) system is developed and compared with 3DVar, EnKF, “deterministic forecast” EnKF (DfEnKF), and pure En3DVar for assimilating radar data through perfect-model observing system simulation experiments (OSSEs). DfEnKF uses a deterministic forecast as the background and is therefore parallel to pure En3DVar. Different results are found between DfEnKF and pure En3DVar: 1) the serial versus global nature and 2) the variational minimization versus direct filter updating nature of the two algorithms are identified as the main causes for the differences. For 3DVar (EnKF/DfEnKF and En3DVar), optimal decorrelation scales (localization radii) for static (ensemble) background error covariances are obtained and used in hybrid En3DVar. The sensitivity of hybrid En3DVar to covariance weights and ensemble size is examined. On average, when ensemble size is 20 or larger, a 5%–10% static covariance gives the best results, while for smaller ensembles, more static covariance is beneficial. Using an ensemble size of 40, EnKF and DfEnKF perform similarly, and both are better than pure and hybrid En3DVar overall. Using 5% static error covariance, hybrid En3DVar outperforms pure En3DVar for most state variables but underperforms for hydrometeor variables, and the improvement (degradation) is most notable for water vapor mixing ratio qυ (snow mixing ratio qs). Overall, EnKF/DfEnKF performs the best, 3DVar performs the worst, and static covariance only helps slightly via hybrid En3DVar.

2013 ◽  
Vol 141 (11) ◽  
pp. 3691-3709 ◽  
Author(s):  
Ryan A. Sobash ◽  
David J. Stensrud

Abstract Several observing system simulation experiments (OSSEs) were performed to assess the impact of covariance localization of radar data on ensemble Kalman filter (EnKF) analyses of a developing convective system. Simulated Weather Surveillance Radar-1988 Doppler (WSR-88D) observations were extracted from a truth simulation and assimilated into experiments with localization cutoff choices of 6, 12, and 18 km in the horizontal and 3, 6, and 12 km in the vertical. Overall, increasing the horizontal localization and decreasing the vertical localization produced analyses with the smallest RMSE for most of the state variables. The convective mode of the analyzed system had an impact on the localization results. During cell mergers, larger horizontal localization improved the results. Prior state correlations between the observations and state variables were used to construct reverse cumulative density functions (RCDFs) to identify the correlation length scales for various observation-state pairs. The OSSE with the smallest RMSE employed localization cutoff values that were similar to the horizontal and vertical length scales of the prior state correlations, especially for observation-state correlations above 0.6. Vertical correlations were restricted to state points closer to the observations than in the horizontal, as determined by the RCDFs. Further, the microphysical state variables were correlated with the reflectivity observations on smaller scales than the three-dimensional wind field and radial velocity observations. The ramifications of these findings on localization choices in convective-scale EnKF experiments that assimilate radar data are discussed.


2009 ◽  
Vol 137 (11) ◽  
pp. 4011-4029 ◽  
Author(s):  
Soichiro Sugimoto ◽  
N. Andrew Crook ◽  
Juanzhen Sun ◽  
Qingnong Xiao ◽  
Dale M. Barker

Abstract The purpose of this study is to investigate the performance of 3DVAR radar data assimilation in terms of the retrievals of convective fields and their impact on subsequent quantitative precipitation forecasts (QPFs). An assimilation methodology based on the Weather Research and Forecasting (WRF) model three-dimensional variational data assimilation (3DVAR) and a cloud analysis scheme is described. Simulated data from 25 Weather Surveillance Radar-1988 Doppler (WSR-88D) radars are assimilated, and the potential benefits and limitations of the assimilation are quantitatively evaluated through observing system simulation experiments of a dryline that occurred over the southern Great Plains. Results indicate that the 3DVAR system is able to analyze certain mesoscale and convective-scale features through the incorporation of radar observations. The assimilation of all possible data (radial velocity and reflectivity factor data) results in the best performance on short-range precipitation forecasting. The wind retrieval by assimilating radial velocities is of primary importance in the 3DVAR framework and the storm case applied, and the use of multiple-Doppler observations improves the retrieval of the tangential wind component. The reflectivity factor assimilation is also beneficial especially for strong precipitation. It is demonstrated that the improved initial conditions through the 3DVAR analysis lead to improved skills on QPF.


2008 ◽  
Vol 136 (3) ◽  
pp. 945-963 ◽  
Author(s):  
Jidong Gao ◽  
Ming Xue

Abstract A new efficient dual-resolution (DR) data assimilation algorithm is developed based on the ensemble Kalman filter (EnKF) method and tested using simulated radar radial velocity data for a supercell storm. Radar observations are assimilated on both high-resolution and lower-resolution grids using the EnKF algorithm with flow-dependent background error covariances estimated from the lower-resolution ensemble. It is shown that the flow-dependent and dynamically evolved background error covariances thus estimated are effective in producing quality analyses on the high-resolution grid. The DR method has the advantage of being able to significantly reduce the computational cost of the EnKF analysis. In the system, the lower-resolution ensemble provides the flow-dependent background error covariance, while the single-high-resolution forecast and analysis provides the benefit of higher resolution, which is important for resolving the internal structures of thunderstorms. The relative smoothness of the covariance obtained from the lower 4-km-resolution ensemble does not appear to significantly degrade the quality of analysis. This is because the cross covariance among different variables is of first-order importance for “retrieving” unobserved variables from the radar radial velocity data. For the DR analysis, an ensemble size of 40 appears to be a reasonable choice with the use of a 4-km horizontal resolution in the ensemble and a 1-km resolution in the high-resolution analysis. Several sensitivity tests show that the DR EnKF system is quite robust to different observation errors. A 4-km thinned data resolution is a compromise that is acceptable under the constraint of real-time applications. A data density of 8 km leads to a significant degradation in the analysis.


2019 ◽  
Vol 12 (9) ◽  
pp. 4031-4051 ◽  
Author(s):  
Shizhang Wang ◽  
Zhiquan Liu

Abstract. A reflectivity forward operator and its associated tangent linear and adjoint operators (together named RadarVar) were developed for variational data assimilation (DA). RadarVar can analyze both rainwater and ice-phase species (snow and graupel) by directly assimilating radar reflectivity observations. The results of three-dimensional variational (3D-Var) DA experiments with a 3 km grid mesh setting of the Weather Research and Forecasting (WRF) model showed that RadarVar was effective at producing an analysis of reflectivity pattern and intensity similar to the observed data. Two to three outer loops with 50–100 iterations in each loop were needed to obtain a converged 3-D analysis of reflectivity, rainwater, snow, and graupel, including the melting layers with mixed-phase hydrometeors. It is shown that the deficiencies in the analysis using this operator, caused by the poor quality of the background fields and the use of the static background error covariance, can be partially resolved by using radar-retrieved hydrometeors in a preprocessing step and tuning the spatial correlation length scales of the background errors. The direct radar reflectivity assimilation using RadarVar also improved the short-term (2–5 h) precipitation forecasts compared to those of the experiment without DA.


2012 ◽  
Author(s):  
Michiko Masutani ◽  
Lars Peter Riishojgaard ◽  
John S. Woollen ◽  
Sean Casey

2020 ◽  
Author(s):  
Shan Zhang ◽  
Xiangjun Tian ◽  
Hongqin Zhang ◽  
Xiao Han ◽  
Meigen Zhang

<p>        While complete atmospheric chemical transport models have been developed to understanding the complex interactions of atmospheric chemistry and physics, there are large uncertainties in numerical approaches. Data assimilation is an efficient method to improve model forecast of aerosols with optimized initial conditions. We have developed a new framework for assimilating surface fine particulate matter (PM<sub>2.5</sub>) observations in coupled Weather Research and Forecasting (WRF) model and Community Multiscale Air Quality (CMAQ) model, based on nonlinear least squares four-dimensional variational (NLS-4DVar) data assimilation method. The NLS-4DVar approach, which does not require the tangent and adjoint models, has been extensive used in meteorological and environmental areas due to the low computational complexity. Two parallel experiments were designed in the observing system simulation experiments (OSSEs) to evaluate the effectiveness of this system. Hourly PM2.5 observations over China be assimilated in WRF-CMAQ model with 6-h assimilation window, while the background state without data assimilation is conducted as control experiment. The results show that the assimilation significantly reduced the uncertainties of initial conditions (ICs) for WRF-CMAQ model and leads to better forecast. The newly developed PM<sub>2.5</sub> data assimilation system can improve PM<sub>2.5</sub> prediction effectively and easily. In the future, we expect emission to be optimized together with concentrations, and integrate meteorological assimilation into aerosol assimilation system.</p>


Author(s):  
L. CUCURULL ◽  
S. P. F. CASEY

AbstractAs global data assimilation systems continue to evolve, Observing System Simulation Experiments (OSSEs) need to be updated to accurately quantify the impact of proposed observing technologies in weather forecasting. Earlier OSSEs with radio occultation (RO) observations have been updated and the impact of the originally proposed Constellation Observing Satellites for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, with a high-inclination and low-inclination component, has been investigated by using the operational data assimilation system at NOAA and a 1-dimensional bending angle RO forward operator. It is found that the impact of the low-inclination component of the originally planned COSMIC-2 mission (now officially named COSMIC-2) has significantly increased as compared to earlier studies, and significant positive impact is now found globally in terms of mass and wind fields. These are encouraging results as COSMIC-2 was successfully launched in June 2019 and data have been recently released to operational weather centers. Earlier findings remain valid indicating that globally distributed RO observations are more important to improve weather prediction globally than a denser sampling of the tropical latitudes. Overall, the benefits reported here from assimilating RO soundings are much more significant than the impacts found in previous OSSEs. This is largely attributed to changes in the data assimilation and forecast system and less to the more advanced 1-dimensional forward operator chosen for the assimilation of RO observations.


2010 ◽  
Vol 138 (2) ◽  
pp. 517-538 ◽  
Author(s):  
Nusrat Yussouf ◽  
David J. Stensrud

Abstract The conventional Weather Surveillance Radar-1988 Doppler (WSR-88D) scans a given weather phenomenon in approximately 5 min, and past results suggest that it takes 30–60 min to establish a storm into a model assimilating these data using an ensemble Kalman filter (EnKF) data assimilation technique. Severe-weather events, however, can develop and evolve very rapidly. Therefore, assimilating observations for a 30–60-min period prior to the availability of accurate analyses may not be feasible in an operational setting. A shorter assimilation period also is desired if forecasts are produced to increase the warning lead time. With the advent of the emerging phased-array radar (PAR) technology, it is now possible to scan the same weather phenomenon in less than 1 min. Therefore, it is of interest to see if the faster scanning rate of PAR can yield improvements in storm-scale analyses and forecasts from assimilating over a shorter period of time. Observing system simulation experiments are conducted to evaluate the ability to quickly initialize a storm into a numerical model using PAR data in place of WSR-88D data. Synthetic PAR and WSR-88D observations of a splitting supercell storm are created from a storm-scale model run using a realistic volume-averaging technique in native radar coordinates. These synthetic reflectivity and radial velocity observations are assimilated into the same storm-scale model over a 15-min period using an EnKF data assimilation technique followed by a 50-min ensemble forecast. Results indicate that assimilating PAR observations at 1-min intervals over a short 15-min period yields significantly better analyses and ensemble forecasts than those produced using WSR-88D observations. Additional experiments are conducted in which the adaptive scanning capability of PAR is utilized for thunderstorms that are either very close to or far away from the radar location. Results show that the adaptive scanning capability improves the analyses and forecasts when compared with the nonadaptive PAR data. These results highlight the potential for flexible rapid-scanning PAR observations to help to quickly and accurately initialize storms into numerical models yielding improved storm-scale analyses and very short range forecasts.


Sign in / Sign up

Export Citation Format

Share Document