Modelling and simulation of energy harvesting with solar cell

Author(s):  
Cristina Marghescu ◽  
Andrei Drumea
Author(s):  
Eduardo Vicente Valdes Cambero ◽  
Humberto Pereira da Paz ◽  
Vinicius Santana da Silva ◽  
Humberto Xavier de Araujo ◽  
Ivan Roberto Santana Casella ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1293
Author(s):  
Chih-Hui Yang ◽  
Keng-Shiang Huang ◽  
Yi-Ting Wang ◽  
Jei-Fu Shaw

Generally, bacteriochlorophyllides were responsible for the photosynthesis in bacteria. Seven types of bacteriochlorophyllides have been disclosed. Bacteriochlorophyllides a/b/g could be synthesized from divinyl chlorophyllide a. The other bacteriochlorophyllides c/d/e/f could be synthesized from chlorophyllide a. The chemical structure and synthetic route of bacteriochlorophyllides were summarized in this review. Furthermore, the potential applications of bacteriochlorophyllides in photosensitizers, immunosensors, influence on bacteriochlorophyll aggregation, dye-sensitized solar cell, heme synthesis and for light energy harvesting simulation were discussed.


2013 ◽  
Vol 340 ◽  
pp. 493-496
Author(s):  
Gang Ye

Using energy-harvesting technology can make the work scope of passive radio frequency identification tag to achieve the maximum .The study put forward to collecting light from the solar cell share tag antenna area, that provides the power source except from the reader receive to electromagnetic power ,which to activate the label circuit. In order to make solar cell to the influence of the tag antenna to minimum ,so optimize it with electromagnetic simulation on its position .The collected dc power could convert into the radio frequency with the efficient E-class oscillator , as well as it could flow into the radio frequency identification tag terminal with the aid of the proper designed coupled circuit .The oscillation frequency is selected on the principle of not affecting the operation of label back scattering .The presented oscillator is showed in the simulations .The E-class oscillator is used together with other forms of collection technology ,such as thermoelectric collect machine.


2022 ◽  
Vol 891 ◽  
pp. 162040
Author(s):  
Ikhtiar Ahmad ◽  
Rashida Jafer ◽  
Syed Mustansar Abbas ◽  
Nisar Ahmad ◽  
Ata-ur-Rehman ◽  
...  

2018 ◽  
Vol 67 ◽  
pp. 01019
Author(s):  
Andrew Bastian ◽  
Kresna Devara ◽  
Savira Ramadhanty ◽  
Tomy Abuzairi

Lighting is an essential thing in performing daily activities and without sufficient lighting we will be difficult to see clearly. The problem is when there is no electricity, for example when we go to a cave or a forest or when there is a natural disaster that shuts down all the electricity. A portable lamp that can be charged by exposing the lamp to sun light can be one of the solution to overcome this problem. Energy Harvesting is a concept where an energy is captured, stored, and used with several technologies including solar technology. Energy Harvesting technology is used in many applications such as calculator, electrical cars or day-to-day lighting This paper will discuss about an application of solar panel in portable LED lamp, that can be used in the night and can be charged during daytime with solar panel. The solar panel, LED, and the battery is integrated in one circuit so there will be more space convenient for user. Solar emergency lamp can be used to illuminate the pathway in mountain or caves and the lamp can float in the water because it case is inflatable. Rechargeable Li-ion Battery 3.7 V 500 mAh and 10 LED SMD is used in this lamp. The proposed design is using a transparent PVC for the case of the lamp. The lamp can be turned on approximately for 4 hours from fully charged battery with 10 LED lamp. The illumination of solar portable emergency lamp was measured using lux meter. The illumination average of the solar portable emergency lamp is 17.58 lux with a deviation of 7.3 lux with medium bright mode. The illumination average of the solar portable emergency lamp is 32.85 lux with a deviation of 12.4 lux for the full bright mode. The Illumination is measured in 50 cm below the solar portable emergency lamp with 9 measured point consisting of 3 rows and 3 columns.


2021 ◽  
Vol 69 (1) ◽  
pp. 544-549
Author(s):  
Wenxing An ◽  
Liuyan Hong ◽  
Yu Luo ◽  
Kaixue Ma ◽  
Jianguo Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document