Squeezed states in the two-atom model with intensity-dependent coupling

2015 ◽  
Author(s):  
Eugene K. Bashkirov
1992 ◽  
Vol 06 (13) ◽  
pp. 2409-2422 ◽  
Author(s):  
MUBEEN A. MIR ◽  
M.S.K. RAZMI

Amplitude-squared (AS) squeezing has been investigated for the m-photon Jaynes-Cummings model assuming the field to be initially in the squeezed states. The role played by intensity-dependent coupling has also been discussed. It has been shown that for the large initial average photon number [Formula: see text] with odd values of m, AS squeezing revokes permanently whereas with even values it recurs periodically. As m increases the revocation is hastened and the duration of occurrence decreases. Higher values of m for the initial field in a squeezed vacuum state can make one of the quadrature permanently squeezed. The AS squeezing behavior for two initial states of the atom, i.e., ground state versus excited state is also compared.


1988 ◽  
Vol 102 ◽  
pp. 215
Author(s):  
R.M. More ◽  
G.B. Zimmerman ◽  
Z. Zinamon

Autoionization and dielectronic attachment are usually omitted from rate equations for the non–LTE average–atom model, causing systematic errors in predicted ionization states and electronic populations for atoms in hot dense plasmas produced by laser irradiation of solid targets. We formulate a method by which dielectronic recombination can be included in average–atom calculations without conflict with the principle of detailed balance. The essential new feature in this extended average atom model is a treatment of strong correlations of electron populations induced by the dielectronic attachment process.


1988 ◽  
Vol 49 (C1) ◽  
pp. C1-215-C1-215
Author(s):  
R. M. MORE ◽  
G. B. ZIMMERMAN ◽  
Z. ZINAMON

2020 ◽  
Vol 190 (12) ◽  
pp. 1233-1260
Author(s):  
David K. Belashchenko

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Gaetano Frascella ◽  
Sascha Agne ◽  
Farid Ya. Khalili ◽  
Maria V. Chekhova

AbstractAmong the known resources of quantum metrology, one of the most practical and efficient is squeezing. Squeezed states of atoms and light improve the sensing of the phase, magnetic field, polarization, mechanical displacement. They promise to considerably increase signal-to-noise ratio in imaging and spectroscopy, and are already used in real-life gravitational-wave detectors. But despite being more robust than other states, they are still very fragile, which narrows the scope of their application. In particular, squeezed states are useless in measurements where the detection is inefficient or the noise is high. Here, we experimentally demonstrate a remedy against loss and noise: strong noiseless amplification before detection. This way, we achieve loss-tolerant operation of an interferometer fed with squeezed and coherent light. With only 50% detection efficiency and with noise exceeding the level of squeezed light more than 50 times, we overcome the shot-noise limit by 6 dB. Sub-shot-noise phase sensitivity survives up to 87% loss. Application of this technique to other types of optical sensing and imaging promises a full use of quantum resources in these fields.


2004 ◽  
Vol 20 (13) ◽  
pp. 2035-2043 ◽  
Author(s):  
H. Wako ◽  
M. Kato ◽  
S. Endo

2001 ◽  
Vol 8 (6) ◽  
pp. 422-430
Author(s):  
Suc-Kyoung Hong ◽  
Chung-In Um ◽  
Kyu-Hwang Yeon

2014 ◽  
Vol 22 (20) ◽  
pp. 24192 ◽  
Author(s):  
Dehuan Kong ◽  
Zongyang Li ◽  
Shaofeng Wang ◽  
Xuyang Wang ◽  
Yongmin Li

1986 ◽  
Vol 119 (2) ◽  
pp. 51-54 ◽  
Author(s):  
Y. Ben-Aryeh

Sign in / Sign up

Export Citation Format

Share Document