intensity dependent coupling
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
F. H. Maldonado-Villamizar ◽  
C. A. González-Gutiérrez ◽  
L. Villanueva-Vergara ◽  
B. M. Rodríguez-Lara

AbstractWe present a general qubit-boson interaction Hamiltonian that describes the Jaynes–Cummings model and its extensions as a single Hamiltonian class. Our model includes non-linear processes for both the free qubit and boson field as well as non-linear, multi-boson excitation exchange between them. It shows an underlying algebra with supersymmetric quantum mechanics features allowing an operator based diagonalization that simplifies the calculations of observables. As a practical example, we show the evolution of the population inversion and the boson quadratures for an initial state consisting of the qubit in the ground state interacting with a coherent field for a selection of cases covering the standard Jaynes–Cummings model and some of its extensions including Stark shift, Kerr-like, intensity dependent coupling, multi-boson exchange and algebraic deformations.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 496
Author(s):  
Abdel-Baset A. Mohamed ◽  
Hichem Eleuch

An analytical solution for a master equation describing the dynamics of a qubit interacting with a nonlinear Kerr-like cavity through intensity-dependent coupling is established. A superposition of squeezed coherent states is propped as the initial cavity field. The dynamics of the entangled qubit-cavity states are explored by negativity for different deformed function of the intensity-dependent coupling. We have examined the effects of the Kerr-like nonlinearity and the qubit-cavity detuning as well as the phase cavity damping on the generated entanglement. The intensity-dependent coupling increases the sensitivity of the generated entanglement to the phase-damping. The stability and the strength of the entanglement are controlled by the Kerr-like nonlinearity, the qubit-cavity detuning, and the initial cavity non-classicality. These physical parameters enhance the robustness of the qubit-cavity entanglement against the cavity phase-damping. The high initial cavity non-classicality enhances the robustness of the qubit-cavity entanglement against the phase-damping effect.


2021 ◽  
pp. 2150060
Author(s):  
N. H. Abd El-Wahab ◽  
R. A. Zait

We consider a generalized multi-photon interaction of two collectively two-level atoms with two-mode of electromagnetic field in the presence of Kerr medium and intensity-dependent coupling. We show that this atomic system possesses supersymmetric structure. We solved this system by virtue of supersymmetric unitary transformation. The supersymmetric generators of this atomic system are constructed. The diagonalization of the corresponding Hamiltonian is performed by introducing a supersymmetric unitary transformation. Accordingly, the eigenvalues and eigenfunctions of the Hamiltonian of the atomic system are obtained. The time evolution of the atom–field wave functions is derived in an exact form for two cases of the initial states of the atoms and the field modes. Some quantum effects such as the second-order correlation function, cross-correlation, purity and Husimi Q-function are investigated. The effects of the Kerr medium, detuning parameter, intensity-dependent coupling and multi-photon transition on the evolution of these quantum effects are examined. We conclude that the supersymmetric unitary transformation method is very simple and can be applied to a variety of atomic systems which possess a supersymmetric structure.


Laser Physics ◽  
2020 ◽  
Vol 30 (11) ◽  
pp. 115205
Author(s):  
Faisal H A Mathkoor ◽  
C H Raymond Ooi

2017 ◽  
Vol 57 (2) ◽  
pp. 539-548 ◽  
Author(s):  
Haytham Bakry ◽  
Ahmed S. A. Mohamed ◽  
Nour Zidan

Sign in / Sign up

Export Citation Format

Share Document