Maximum attainable ion energy in the radiation pressure acceleration regime

Author(s):  
S. S. Bulanov ◽  
E. Esarey ◽  
C. B. Schroeder ◽  
S. V. Bulanov ◽  
T. Z. Esirkepov ◽  
...  
2010 ◽  
Vol 36 (1) ◽  
pp. 15-29 ◽  
Author(s):  
E. Yu. Echkina ◽  
I. N. Inovenkov ◽  
T. Zh. Esirkepov ◽  
F. Pegoraro ◽  
M. Borghesi ◽  
...  

2015 ◽  
Vol 33 (1) ◽  
pp. 103-107 ◽  
Author(s):  
S. M. Weng ◽  
M. Murakami ◽  
Z. M. Sheng

AbstractThe generation of fast ion beams in the hole-boring radiation pressure acceleration by intense laser pulses has been studied for targets with different ion components. We find that the oscillation of the longitudinal electric field for accelerating ions can be effectively suppressed by using a two-ion-species target, because fast ions from a two-ion-species target are distributed into more bunches and each bunch bears less charge. Consequently, the energy spread of ion beams generated in the hole-boring radiation pressure acceleration can be greatly reduced down to 3.7% according to our numerical simulation.


Author(s):  
J. Schreiber ◽  
F. Bell ◽  
Z. Najmudin

Abstract Experiments have shown that the ion energy obtained by laser–ion acceleration can be optimized by choosing either the appropriate pulse duration or the appropriate target thickness. We demonstrate that this behavior can be described either by the target normal sheath acceleration model of Schreiber et al. or by the radiation pressure acceleration model of Bulanov and coworkers. The starting point of our considerations is that the essential property of a laser system for ion acceleration is its pulse energy and not its intensity. Maybe surprisingly we show that higher ion energies can be reached with reduced intensities.


2016 ◽  
Vol 23 (5) ◽  
pp. 056703 ◽  
Author(s):  
S. S. Bulanov ◽  
E. Esarey ◽  
C. B. Schroeder ◽  
S. V. Bulanov ◽  
T. Zh. Esirkepov ◽  
...  

2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Tim Arniko Meinhold ◽  
Naveen Kumar

The process of radiation pressure acceleration (RPA) of ions is investigated with the aim of suppressing the Rayleigh–Taylor-like transverse instabilities in laser–foil interaction. This is achieved by imposing surface and density modulations on the target surface. We also study the efficacy of RPA of ions from density modulated and structured targets in the radiation dominated regime where the radiation reaction effects are important. We show that the use of density modulated and structured targets and the radiation reaction effects can help in achieving the twin goals of high ion energy (in GeV range) and lower energy spread.


2015 ◽  
Vol 114 (10) ◽  
Author(s):  
S. S. Bulanov ◽  
E. Esarey ◽  
C. B. Schroeder ◽  
S. V. Bulanov ◽  
T. Zh. Esirkepov ◽  
...  

1991 ◽  
Vol 223 ◽  
Author(s):  
Qin Fuguang ◽  
Yao Zhenyu ◽  
Ren Zhizhang ◽  
S.-T. Lee ◽  
I. Bello ◽  
...  

ABSTRACTDirect ion beam deposition of carbon films on silicon in the ion energy range of 15–500eV and temperature range of 25–800°C has been studied using mass selected C+ ions under ultrahigh vacuum. The films were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy and diffraction analysis. Films deposited at room temperature consist mainly of amorphous carbon. Deposition at a higher temperature, or post-implantation annealing leads to formation of microcrystalline graphite. A deposition temperature above 800°C favors the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation was observed in these films.


Sign in / Sign up

Export Citation Format

Share Document