Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

Author(s):  
Yury V. Kistenev ◽  
Alexey V. Borisov ◽  
Dmitry A. Kuzmin ◽  
Anna A. Bulanova ◽  
Andrey A. Boyko ◽  
...  
2000 ◽  
Vol 123 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Nader Jalili ◽  
Ebrahim Esmailzadeh

A new approach to optimal control of vehicle suspension systems, incorporating actuator time delay, is presented. The inclusion of time delay provides a more realistic model for the actuators, and the problem is viewed from a different perspective rather than the conventional optimal control techniques. The objective here is to select a set of feedback gains such that the maximum vertical acceleration of the sprung mass is minimized, over a wide band frequency range and when subjected to certain constraints. The constraints are dictated by the vehicle stability characteristics and the physical bounds placed on the feedback gains. Utilizing a Simple Quarter Car model, the constrained optimization is then carried out in the frequency domain with the road irregularities described as random processes. Due to the presence of the actuator time delay, the characteristic equation is found to be transcendental rather than algebraic, which makes the stability analysis relatively complex. A new scheme for the stability chart strategy with fixed time delay is introduced in order to address the stability issue. The stability characteristics are also verified utilizing other conventional methods such as the Michailov technique. Results demonstrate that the suspension system, when considering the effect of the actuator time delay, exhibits a completely different behavior.


2006 ◽  
Vol 83 (11-12) ◽  
pp. 2184-2188 ◽  
Author(s):  
T. Lacrevaz ◽  
B. Fléchet ◽  
A. Farcy ◽  
J. Torres ◽  
M. Gros-Jean ◽  
...  

2015 ◽  
Vol 52 (2) ◽  
pp. 020006
Author(s):  
姜萌 Jiang Meng ◽  
冯巧玲 Feng Qiaoling ◽  
魏宇峰 Wei Yufeng ◽  
王聪颖 Wang Congying ◽  
梁同利 Liang Tongli

2018 ◽  
Vol 7 (1) ◽  
pp. 57 ◽  
Author(s):  
Kalyan Rayavaram ◽  
K.T.V Reddy ◽  
Padma Priya Kesari

In this paper, the design and simulation of a compact ultra-wide band (UWB) microstrip antenna with quadruple band-notched characteristics for short-distance wireless telecommunication applications were explored. The design process of the antenna is carried on FR4 substrate with dielectric constant 4.4, loss tangent 0.02, thickness of 0. 8mm and the size of the proposed antenna are 30×20 mm2. The rectangular monopole antenna endures a rectangular radiating patch with chamfered bevel slots on the top side, and a defective ground planed on the bottom side of the substrate. To realize single, dual, triple and quadruple band notch characteristics, slot-1 is created on the patch to achieve first notch at 3.5 GHz, which eliminates WIMAX signal, slot-2 is created on the patch to achieve second notch at 4.6 GHz, which eliminates INSAT signal, slot-3 is created on the patch to achieve third notch at 5.5 GHz, which eliminates WLAN signal and also fourth notch is created at 9.5GHz which eliminates X-band frequency with slot-1 outer length. The proposed antenna is well miniaturized and can be easily integrated with any compact devices. The simulated result shows that proposed antenna gain a good range of UWB from (2.6 GHz to 13.4 GHz).


Sign in / Sign up

Export Citation Format

Share Document