Terahertz ISAR and x-ray imaging of wind turbine blade structures

2016 ◽  
Author(s):  
Robert Martin ◽  
Christopher S. Baird ◽  
Robert H. Giles ◽  
Christopher Niezrecki
2016 ◽  
Vol 881 ◽  
pp. 336-340
Author(s):  
Márcio Alexandre Marques ◽  
Maria Lúcia Pereira Antunes ◽  
Marcos Minussi Bini ◽  
Marcos Vinicius de Castro

Transforming industrial wastes into construction materials through recycling is a feasible alternative that contributes to reduce the consumption of natural resources. Besides, modern civil construction seeks strong lightweight building materials. Due to their low density, wind turbine blade manufacturing waste and EPS post-consumer packaging can be used for this purpose. Such work uses X-ray imaging to evaluate the spatial distribution of these wastes in Portland cement concrete. Test specimens were produced containing wind turbine blade waste replacing part of the gravel content, and EPS waste replacing part of the sand content. X-ray images of the test specimens reveal that the waste is distributed homogeneously in the matrix. Furthermore, the mechanical strength of these test specimens meets the requirements of the Brazilian technical standards for non-load bearing concrete blocks.


Author(s):  
Gwochung Tsai ◽  
Yita Wang ◽  
Yuhchung Hu ◽  
Jaching Jiang

Author(s):  
Aldemir Ap Cavalini Jr ◽  
João Marcelo Vedovoto ◽  
Renata Rocha

2021 ◽  
Vol 7 (3) ◽  
pp. 46
Author(s):  
Jiajun Zhang ◽  
Georgina Cosma ◽  
Jason Watkins

Demand for wind power has grown, and this has increased wind turbine blade (WTB) inspections and defect repairs. This paper empirically investigates the performance of state-of-the-art deep learning algorithms, namely, YOLOv3, YOLOv4, and Mask R-CNN for detecting and classifying defects by type. The paper proposes new performance evaluation measures suitable for defect detection tasks, and these are: Prediction Box Accuracy, Recognition Rate, and False Label Rate. Experiments were carried out using a dataset, provided by the industrial partner, that contains images from WTB inspections. Three variations of the dataset were constructed using different image augmentation settings. Results of the experiments revealed that on average, across all proposed evaluation measures, Mask R-CNN outperformed all other algorithms when transformation-based augmentations (i.e., rotation and flipping) were applied. In particular, when using the best dataset, the mean Weighted Average (mWA) values (i.e., mWA is the average of the proposed measures) achieved were: Mask R-CNN: 86.74%, YOLOv3: 70.08%, and YOLOv4: 78.28%. The paper also proposes a new defect detection pipeline, called Image Enhanced Mask R-CNN (IE Mask R-CNN), that includes the best combination of image enhancement and augmentation techniques for pre-processing the dataset, and a Mask R-CNN model tuned for the task of WTB defect detection and classification.


Sign in / Sign up

Export Citation Format

Share Document